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Proof: Let the queueing system be empty at t = ° and let

p"(t Ik) = P{at time t there are exactly n users being
served Iexactly k arrivals in [O, t]}

Then, since arrivals occur according to a Poisson process,

(4.89)

But, as we have seen in Chapter 2, if there are exactly k arrivals from a
Poisson process in [O, t], the unordered arrival times are uniformly, inde-
pendently distributed over [O, t]. So, we now consider a random user arriving
in the interval [O, t] (see Figure 4.13). If the random user arrives with x more
time left in [O, t],. the probability that he is still being serviced at t is [1 _
Fs(x)]. But the unconditional probability he arrives in [t - x, t - x + dx]
is dx]t, Thus, the probability that a random user who arrives any time in
[O, t] is still being serviced at time t is

a= LI - Fs(x) dx
(4.90)t

~ l-x -1--- x----j

tO

Arrival of a
random user

FIGURE 4.13 User arrival in [O, r].

We now use the fact that the unordered arrival times are independent. Given
k arrivals in [O, t], the probability that there are n customers being serviced
at t (n < k) is

p"(t I k) = (~) anel - a)k-" (4.91)

Substituting (4.90) and (4.91) into (4.89), we obtain (4.88)-after some
algebraic manipulation. The steady-state result (4.87) is derived just by letting
t .........•00 in (4.88).

As we have already noted earlier, in order to apply a MjG].» (ar M/M/oo)
model, it is not really necessary to have an infinite number of servers. In
practice, ali that is needed is that the actual number of servers be sufficiently
large or that workload be sufficiently small so that queues almost never formo
Fire department operations, for example, possess this characteristic. lt is
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highly unlikely that in a major city there will ever be insufficient fire engines
ar fire ladders to dispatch to a major fire; for if the fire stations in a given
area run out of fire companies as a result of one ar more multiple alarm
fires, then other fire companies are dispatched to the scene, first from neigh-
boring stations and eventually, if necessary, from nearby cities or com muni-
ties. Assumin? then that fire alarms in a region are generated a~c?rdin~ to a
Poisson process, service times for diíferent fire alarms are statistically inde-
pendent and identically distributed, fire alarm rates and service rates are
constant in time, and an infinite number of fire-fighting units are available,
one can use the Ml Glc»: model to estimate the distribution of the number of
fire-fighting units which are busy at any one time in an area. Although the
validity of some of the assumptions above may be questioned, the results
provided by such a model" [CRAI 71] have been shown to provide excellent
approximations to the true distribution [IGNA 78].

4.8.3 G/G/1 System

We consider next a system consisting of a single serve r with independent
and identically distributed user interarrival times, independent and identically
distributed service times and unlimited queueing capacity. This is the C/C/I
system.

Let us now call X the random variable that represents interarrival time
and usefx(x), l/À, and 0'1 for the pdf, the expected value and the variance of
X, respectively. Similarly, as we have already done, we shall use S, fsCs), 1/u,
and a} as the corresponding symbols for the service times.

Practically no easily usable exact results exist for this model because of
the analytical difficulties that we outlined earlier. However, _so_me _useful
bounds have been developed in recent years for the quantities L, Lq, W, and
Wq•

For general G/G/I systems (no restrictions on the interarrival or on the
service time pdf's) a most useful upper bound [MARS 68] and a (much less
useful) lower bound [MARC 78] have been obtained. These bounds state that
for the average steady-state waiting time in queue, Wq, we have

p2(1 + C}) - 2p < W < À(a1 + a})
2À(1 - p) - q - 2(1 - p) (4.92)

where C, (= asfJ.) is the coefficient of variation for the service times [as used
in (4.79a)] and, as usual, p = À/fJ.. The condition for the existence of steady
state is p < I.

9The referenced model, due to J. Chaiken, is a modified Ml Glc« model which accounts
for the fact that two or more fire units are often sirnultaneously dispatched to a
tire alarm.
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That the lower bound in (4.92) is not particularly tight becomes obvious
from the fact that, even at very high utilization rates (p ~ 1), this bound is
trivial (i.e., takes negative values) unless C, > 1. But for C. to be greater than
1, it must be that the service time pdf must be "more randorn" than the nega-
tive exponential pdf (which has C, = 1). This would be rather unusual in
practical urban service system problems.

Fortunately, a simple and quite tight lower bound has been obtained
[MARS 68] for a particular subclass of G/.G/l queueing systems. This sub-
class, happily, encompasses most of the cases that one is Jikely to encounter
in practice. The subclass of GIG/l queueing systems that we refer to consists
of those systems for which the interarrival time pdf fxCx) has the following
property: For ali values of a constant to (> O), it is true that

1E[X - t o IX > to] <T (4.93)

Although (4.93) may appear complicated at first sight, it really imposes a
very simple condition: if it is known that 'any given interarrival gap lasted
more than a time to, then (4.93) requires that the expected length of the
remaining time, X - to, in that gap be less than the unconditional expected
length of the gap, 1 o E[X] (= l/À). One of the basic properties of the negative
exponential random variable, as we know, is that (4.93) is an equality for
this random variable.

When condition (4.93) is satisfied, the following is true:

(4.94)

where Bis the upper bound listed in (4.92), that is,

B = À(oJ + aD.
2( I .

As usual, the relationships t,= À Wq, W = Wq + li u, and L = À W
h~ld, and_ thus upper and lower bounds can be obtained for the quantities L,
W, and Lq as well from the bounds above. To appreciate how good the
bounds in (4.94) are, we can look at the form that (4.94) takes for the average
queue length, Lq. We have

ÀB - I + p <L < ÀB2 - q-

which means that the difference between the upper and the Jower bounds is
(l + p)/2, and since O < p < I, this difference is always between 1and 1.

10Probability distributions that have this property are sometimes referred to as "de-
creasing mean residuallife" (DMRL) distributions, for obvious reasons.
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Thus, we are able to determine the average queue length to within an accuracy
of between 0.5 and 1 user (depending on the value of p), which is truly excel-
lent for any practical application. In fact, the two bounds, remarkably, get
closer to each other, on a percentage basis, as p -> 1, because L, then
becomes large, and a difference of 1 between the two bounds is thus insignifi-
cant.

It has already been stated that th~ case which satisfies condition (4.93)
and, consequently, for which tight upper and lower bounds can be used is
the most common in practice. The reason is that most "well-behaved" arrival-
time distributions satisfy (4.93). Such, for instance, would be the case for
uniform or triangular or beta-type pdf's, which often are reasonably good
approximations of many general interarrival time pdf's. Only a few common
continuous random variables, notably those in the hyperexponential family,
which are "more random"-informally speaking-than the negative expo-
nential random variable (see Problem 4.16), do not, in fact, satisfy (4.93). In
practice, it is usuaIly simple to recognize those distributions which do not
satisfy (4.93). This is especially true of random variables taking on discrete
values only.

Consider, for instance, the random variable Y with the probability mass
function shown in Figure 4.14. For the value to = 1, we have

E[Y-toIY>toJ=E[Y-IIY> l]=P{Y= 1O}·(IO-I)= 1·9=9

On the other hand, E[Y] = 1.1 + 1.10 = 5.5. Therefore, (4.93) is not
satisfied by random variable Y.

Py(y)

o 10 y

FIGURE 4.14 Random variable that does not
satisfy condition (4.93).

Heavy-traffic approximation. Another important practical result which is
available for the GIGjl system is known as the heavy-traffic approximation
[KING 62]. As the name suggests, this is a result that applies for values of p
which are close to I and, consequently, it provides estimates for waiting times
when it is known that waiting times are large.

The heavy-traffic approximation states that when p -+ 1, the distribution
of steady-state waiting time in queue in a G/G/l system is approximately
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negative exponential with mean value

w = À(ai + a})
q 2(1 - p) (4.95)

where À, p, ai, and a~ are as defined above.

This is a remarkable result, since it provides not just an estimate of a
moment ofwaiting times but ofthe actual distribution itself under very general
conditions.

Note that the above expression for Wq is identical to the expression for
the upper bound on Wq for C/C/I systems in (4.92). Thus, the upper bound
of (4.92) improves as an approximate estimate of Wq as p --> 1. From (4.95)
and (4.94) we can also reach the following important practical conclusion:

The average waiting time for C/C/I queueing systems becomes dominated
by a (I - p)-l term under steady-state conditions, as the utilizationratio
approaches 1. Thus, the type of behavior first indicated by the simple
M/M/I queueing system is also present for entirely general arrival- and
service-time distributions.

4.8.4 G/G/m Oueueing Systems

About the only general results that have been obtained to date for the
G/G/m case are in the form of quite loose upper and lower bounds on average
steady-state queueing characteristics [BRUM 71]. These bounds are often
computed by, first, comparing a C/Gim system with a G/G/I system that has
the same "service potential" as the G/C/m system (i.e., the single server in
G/G/l works m times as fast as each of the servers in G/G/m) and, then, by
using the earlier results on Gl Gl),

The best generally applicable bounds on the average waiting time in queue
which have been published to date for G/C/m systems give the inequalities

< W < [ai + (l/m)a~ + «m - 1)/m2)(1/1l2)]A
- q - 2(1 - Ajmll)

(4.96)

where u, a~, and E[S2] are the service rate, variance of service time, and
second moment of service time, respectively, for each of the m servers. WJ
is the average waiting time for a GjGjl system with a service time described
by a random variable S* = Sim (i.e., with service m times faster than that
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of each of the m servers in the G/G/m system) and with an arrival process
identical to that for the G/G/m system.

For W~ one should obviously use either an exact expression, if one is
available, ar, as is more likely, a lower bound on W~ by using (4.92) ar, if
applicable, (4.94). For example, for the M/G/m queueing system, one should
use the exact expression (4.81) for W~ with l/mil and aUm2, for the expected
value and variance of the service times, respectively.

)

Finally, a result analogous to the heavy-traffic approximation for G/G/l
systems has also been derived recently [KOLL 74] for C/C/m systems. This
result states:

For Àjmll --> 1 in a C/Gim system, the waiting time in queue under
steady-state conditions assumes a distribution that is approximately
negative exponential with mean value

w ~ [ai + (aMm)]À
q - 2(1 - À/mil)

(4.97)

Note once more that expected waiting time is dominated by a (1 - pt1

term, as p approaches 1 (p = À/mil for multiserver systems).

4.9 OUEUEING SYSTEMS WITH PRIORITIES

In alI the cases that we have discussed so far, the order in which the users of a
service facility get access to that service facility has been determined by queue
disciplines such as FCFS, LCFS, and SIRO (see also Section 4.2). A common
feature of these disciplines is that users are characterized by the order of
their arrival at the queueing system, but no distinction is made among dif-
ferent classes of users with reference to the type or the length of service they
request. It is natural to ask what effect these disciplines have on the expected
total system time, W (or on Wq or L or Lo), experienced by users of a queue-
ing system.

Suppose, for example, that in the case of the single operator with an
infinite number of lines at the center for emergency calls which we discussed
earlier (Section 4.6), one wanted to choose among the FCFS, SIRO, and
LCFS disciplines. To maintain a FCFS (ar LCFS) sequcncing of calls, it is
necessary to purchase an electronic call-sequencing device. Does such a
device contribute anything to improving the quality of scrvicc as pcrceived by
calIers to our emergency center?

To answer this question, one can reexamine the analysis that led to (4.38),
the expression for Wfor that M/M/I system with infinite capacity. Note that
the state-transition diagram of Figure 4.6 is unafTected by the queue discipline
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in use-all that matters is the total number of calls on hand. Thus, the analy-
sis leading to (4.38) is identical for FCFS, SIRO, and LCFS, and conse-
quently, at least for this example,

(4.98)

Moreover, since Little's formula (4.10) is valid for any queue discipline
(see Section 4.4), the same is true for L, r; and Wq•

Does this mean that callers will be indifferent to the queue discipline?
Probably not, for the distributions ofthe total system times and ofthe waiting
times (but not of the number of calls in the system or in queue) will be dif-
ferent in the three cases. To understand why, consider a random caller who
at the instant when she is connected with the emergency center is told that k
other callers are also waiting for service, while the operator is currently busy
with another call. ln a FCFS queue this information is valuable to the new
caller in estimating her expected waiting time, in a SlRO queue less so, and
in a LCFS queue it is practically useless. We infer from the above that, for
this example,

(4.99)

where Var (W) denotes the variance of the total system occupancy time.
One can extend the same reasoning that Ied to (4.98) to any queueing

system, and indeed the following statement can be made [KLEI 76]:

As long as the queueing discipline sequences the users of a queueing sys-
tem in a way that is independent of their service time (or any measure of
their service time), the distribution of the number in the system-and the
expected total system time and waiting time-will be invariant to the
queue discipline.

Note that the foregoing statement applies to other conceivable queue dis-
ciplines in addition to FCFS, SlRO, and UFO.

The validity of (4.99) for any queueing system can also be argued intui-
tively (the inequalities become equalities for systems with an infinite number
of servers). However, in all but a few cases-such as the M/G/I system-it is
very difficult to obtain Var (WSIRo) or Var (WLCFS)' even with advanced tech-
niques.

ln practice, though, numerous queueing systems sequence the access of
users to service facilities by using criteria related to the length of service or
to the type of service requested. The latter criterion (type of service requested)
is particularly often used in the case of urban services and, especially, of
emergency urban services. For instance, police car dispatchers almost always

classify reported incidents into one of several categories and accord higher
priority to some categories over others (e.g., calls about "crimes in progress"
receive more immediate attention than reports of "rnissing, probably stolen
items"). Similarly, in emergency medical rooms of large hospitaIs, certain
types of patients are given higher priority than other types. We shall examine
next the queueing characteristics of systems of this type.

)

4.9.1 Preemptive and Nonpreemptive Priorities

Priorities that differentiate among classes of users are general1y classified
as preemptive or nonpreemptive. ln either case, as soon as service to any
particular user has been completed, the system chooses as the next user a
representative of the highest-priority class present. (Priorities within classes
are determined according to FCFS, LCFS, SIRO, or some other discipline.)
The difference, however, lies in the fact that in systems using preemptive
priorities, high-priority users are never kept waiting in favor of lower-priority
ones. That is, the system stands ready to interrupt service to any present
occupant of the service facility, immediately upon arrival of a user belonging
to a class with higher priority than that of the present facility occupant. By
contrast, nonpreemptive systems never interrupt a service to a user once that
service has begun-even if a higher-priority user arrives at the system while
this service is going on.

For preemptive systems, what happens to users who get "ejected" from
the service facility is in itself a matter to be specified. ln some systems, service
to the ejected user-once that user eventually regains hold of the service
facility-continues right from the point where it was interrupted. ln other
systems, service may have to be restarted from scratch. (Note that for users
whose service times are negative exponential, these two cases are indistin-
guishable.) It is also conceivable that an ejected user may be assigned to a
priority class higher than his former one, in compensation for being ejected.

It should also be noted that many queueing systems-especially in the
urban environment-operate with different priority rules for different user
classes. For instance, it is possible that users in aclass with very high-priority
status may obtain preemptive service, whereas users of medium importance
may enjoy only nonpreemptive priority over users in the low-priority classes.
Such is the case in police dispatching where an incident reporting "a police
officer in danger" is almost always accorded preemptive priority, while other
types of high-priority incidcnts may be nonprecmptivc. Finally, it is also
possible that different queue disciplines (e.g., FCFS, SIRO, etc.) may be used
within different classes ofusers at the same queueing system. Thus, users who
belong to, say, c1ass A may queue up according to a FCFS order, whereas
users in another class, B, may be served in random order.

If nothing else, it should be clear from the above that there exist a bewil-
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dering number of variations of queueing systems with class priorities. Of
those variations, queueing theorists have studied with some success a few and
have derived an interesting (but hardly exhaustive) set of results. We shaIl
review now some of the most important and useful of those results, always
with reference to the type of queueing model shown in Figure 4.15. Facility
users in this model are separated into a number, say r, of distinct user classes.
Each class is assigned a priority number k, k = 1, 2, ... , r, for use of the
service facility. By convention, the smaller the priority number, the higher the
priority of the class.

À1 ----I QJ2J
À2 ----I CEJ 2,J'

I
,

II
Àk-1 I ctEEJ I

I. k-l---x

Àk
----~ Servicek• facility

Àk+l Ix Ik+ 1----I,"
1 1 I
I 1 I
1 1 1

1 1 1

1
I I

À,
I. ----~ r

Queues Priority
number

FIGURE 4.15 Schematic representation of a queueing system with r priority classes.

Each of the r queues will be assumed to run on a FCFS basis, but any
given priority class cannot obtain access to the service facility unless no
other user belonging to a higher-priority (lower-k) class is present in the
queues. However, whether user service is ever interrupted or no~ wi1l.de~~nd
on whether the queueing system uses preemptive or nonpreernptive priorities.

Fina!ly, we note at the outset that in all cases that will be examined. in
this section, it is assumed that arrivals for each priority class are Poisson with
arrival rate Àk for priority class k.

Nonpreemptive priorities in a M/G/l system. We shall consider first the case
in which the queueing model of Figure 4.15 contains a single server that
operates under a nonpreemptive priority regime. Moreover, we shall assume

-
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that the random variable Sk' which describes the service time for users in
priority class k, has a general probability density function, expected value
1/ J.lk' and second moment E[S~]. We shall also define the quantity Pk fi Àkl J.lk'
Thus, the queueing system of Figure 4.15 is a M/G/l system with utilization
ratio given by

P = Pl + P2 + ... + p, (4.100)
,

The system queueing capacity is assumed to be infinite,
Under these assumptions, we shall now proceed to derive an expression

for the average waiting time in queue for a user in priority class k, Wqk• To do
this, let us consider the arrival of a random user from class k at the queueing
system. We can immediately write an expression for Wqk (in steady state) as
follows:

(4.101)

where Wo = expected remaining time in service for the user who occupies
the serve r at the time when the new user (from class k)
arrives at the queueing system

fq{ = expected number of users in priority class iwho are already
waiting in queue at the instant when the new user (from
class k) arrives

M/ = expected number of users in priority class iwho will arrive
while the newly arrived user (from class k) waits in the
queue

To comprehend the meaning of (4.101) it is important to notice that the
first summation on the right includes user classes 1 through k (including k)
since users from these classes who are already waiting .when our new user
arrives at the system will be served before the new user. By contrast lhe new
user takes precedence over ali users of classes k + I, k + 2, ... , r who are
already waiting. Therefore, these classes do not affect the expected waiting
time of the new user and thus do not appear in (4.101). Note also that the
second summation is for classes 1 through k - 1 (does no! include k) since
users from these classes who arrive while our new user from class k is waiting
wiIl take precedence over the user from class k.

We now set out to evaluate the quantities Wo, Lq" and M{ in (4.10 I).
Beginning with Wo, note that if the server at the instant of the new user's
ar rival is occupied by a user frorn priority class i, we have [see our discussion
of random incidence in Chapter 2 and, in particular, (2.66)]

(W- I') - E[Sf] _ J.l,E[Sf]
o I - 2E[S/] - 2
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But since we have Poisson arrivals for users of c1ass k, the probability
that a user of class i will be occupying the server at the instant of our random
arrival is simply equal to the fraction of time, p, that users of type i occupy
the server. Thus,

(4.102)

For the value of Lq" we can use our fundamental relation (4.11) and write

(4.103)

(Note that the Wq, are still unknown.) Finally, for the expected number of
users of c1ass i, M" who arrive during the time when the new user from
class k is waiting in line, it is clear that since the arrival process for type i
users is Poisson with rate Â"

(4.104)

Substituting (4.103) and (4.104) in (4.101),

_ _ k _ _ k-I
Wqk = Wo + :L: p, Wq, + Wqk :L: p,

'=1 /=1
(4.105)

where Wo is given by (4.102). Solving now (4.105) for Wqk, we obtain

for k = 1,2, ... , r (4.106)

We can now solve (4.106) recursively, beginning with Wql, then with Wq2,
and so on. After a moderate amount of algebra (try deriving Wql and Wq2),
it becomes clear that

for k = 1,2,3, ... (4.107)

where, for convenience, we have used the notation 1i

(4.108)

and Wo is as given by (4.102).
Expression (4.107) is probably the best-known result in the literature on

queueing systems with priorities. From it and through use of (4.11), (4.10),
and (4.13), one can obtain expressions for Lqk' Wk, and Lk for ali classes of

l'ln the expression for Wql• we must set ao = O.
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users k. It should also be emphasized that (4.107) demonstrates olearly the
fact that in a nonpreemptive priority system, steady state may be reached for
some priority classes and not for others. From (4.107), priority c1ass k will
reach steady state as long as a, < 1, since for that condition Wqk is positive
and finite. That is, if there is an integer p (l <P < r) such that PI + P2 +
.. , + pp < 1 while PI + P2 + ... + PP + Pp+I > 1, then the p highest-
priority classes reach steady-state delays while users in classes p + 1 through
r experience unbounded waiting times. In this case, (4.107) must be modified
slightly to account for the fact that, in steady state, priority classes 1 through
p occupy the server for a fraction of time equal to Pk each (k =. 1, 2, ... ,p);
class p + 1 occupies the server for a fraction of time equal to I - ap; and,
finally, classes p + 2 through r do not ever obtain access to the server. We
then have

l'tp/E[Sf] + (1 - ap)E[S;+ll
- /=1 2E[S/1 2E[Sp+Il

Wqk = (1 - ak_I)(1 - ak)
00

for k <p
(4.107a)

for k > P

Note that (4.107a) reduces to (4.107) for p = r. Note also that the Wqk do no!
depend on users in priority classes lower than k, except for the contribution
ofthese users to the numerator of(4.107) or of(4.107a).

4.9.2 Important Optimization Result

A question that naturally arises in the design of queueing systems with
priorities is how these priorities should be assigned to accomplish some
desirable objective with regard to the performance of the queueing system.
Obviously, the answer to this question will depend on the characteristics of
the queueing system at hand and on the nature of the desirable objective. In
general, questions of this type are among the most difficult to deal with in
queueing theory.

A most useful result in this area has been obtained for the nonpreemptive
M/G/I priority system which we have just analyzed. We consider again r
distinct classes of users with Poisson arrivals (at a rate Âk for class k) and
general service times (with mean 1/J1.k for class k) and with the priority
arrangement described through Figure 4.15. Let us assume that for each class
of users there is a cost ck (k = 1, 2, ... , r) for each unit of time that a use r
from this class spends in the system (in queue or in service).

Suppose, then, that the objective is to minimize the average cost to all
users per unit of time (for steady-state conditions); that is, we wish to mini-
mize

(4.109)

Then the following holds true:
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Theorem: To minimize (4.109) compute for each class k, the ratio Ik =
ck/(l/ Jlk)' Then assign priorities according to the relative magnitudes of the r
ratios: specifically, the higher the value of the ratio, the higher the priority of
the class.

In other words, we reorder the subscripts of the ratios Ik so that

(4.110)

Then the class of users that corresponds to the ratio I, (i.e., that incurs the
highest cost per unit of service time) is assigned top priority for access to the
server, the class corresponding to the ratio 12 second highest priority, and so
~n. Note that this result holds only for the case when the costs of system
time (or of waiting time) increase linearly with system (ar waiting) time for
ali classes of users.

. No formal proof of the theorem will be presented here (the reader may
wish to consult [KLEJ 76], for one). It is simple, however, to argue intuitively
for the theorem's validity by recognizing that minirnizingC in (4.109) is the
same as minimizing the expected area between the "cost inflow" and "cost
outflow" curves in Figure 4.16. This figure is a modified version of Figure
4.3 in which the vertical axis represents "cost" instead of "number of users."
We have no control over the "cost inflow" curve whose expected rate of
growth per unit of time is constant and equal to L:r= I C)'f' However, we can
maximize the expected rate of growth of the "cost outflow" curve by always

Cost ($)

Ir-.J

r--.Jr(
I

c(t),....J Cost

1 rJ outflow

r _J

t I
! 0:"r-----J
I ,...----f-ir---....-.J ,

FIGURE 4.16 Cost inflow and outflow at a queueing system. At ti a user with cost
Ck per minute arrives. The same user leaves the system at t z. At time t. cost is "accu-
rnulated" at the rate c(t) per unit of time.

selecting among the available users the one that "expels" expected cost from
the system at the maximum rate per unit of time. This is equivalent to choos-
ing the user with the maximum Ck• Jlk (= rate of cost "expulsion" per unit
time resulting from serving a user of class k) which confirms the theorem. It
should also be noted that the first of the two terms on the right-hand side of
(4.109) is a constant that is independent of the priority assignments, There-
fore, to minimi;e (4.109) one must minimize the second sum on the right.

The following corollary follows frora the theorem.

Corollary: To minimize the average waiting time for ali users in the system,
assign priorities according to the expected service times for each user class:
the shorter the expected service time, the higher the priority of the class.

To prove the corollary, ali we have to do is set ck = 1 for ali k in the
.theorem (this is equivalent to assigning equal weight to a unit of time's
waiting for ali classes of users). Then Ik = Jlk and the result of the coroIlary
follows.

The corollary we have just discussed is sometimes referred to as the
"shortest-expected-processing-time-first" (SEPT) rule. Note that, contrary
to FCFS, SIRO, and LCFS, SEPT affects the distribution of the number of
users present in the queueing system and the expected waiting and total sys-
tem times by using a characteristic ofthe length of service time as the criterion
for sequencing.

4.9.3 Nonpreemptive Priorities in a M/M/m System

In attempting to extend expressions such as (4.107) to the case of queue-
ing systems with many servers, one encounters the same problems that arise
in trying to extend the analysis of M/G/l queueingsystems to M/G/m queue-
ing systems. Thus, exact results for multiserver queueing systems with non-
preemptive priorities are available only for the case of negative exponential
service times (M/M/m systems). Moreover, the mathematical analysis
becomes intractable unless alI r priority classes of users have the same mean
service time, Jl-I.

Under these assumptions-and using the same notation as for the single-
server system-it is not difficult to show (see Problem 4.8) that, as before,

for k = 1,2, ... ,r (4.111)

where Wo is now defined as the expected value of the remaining time until
any one of the m servers becomes free fol1owing the arrival of a new user
(of class k) at the queueing system.'> (If one ar more of the servers are free at

12As usual for multiserver systems, we define p, = ).,t/mfJ.



240 lntroduction to Oueueing Theory and lts Applications Ch.4

the instant ofthe new arrival, that remaining time is equal to zero.) From the
theory of M/M/m queueing systems and, in particular, frorn expression
(4.44), we then have (assuming ),1 + ),2 + ... + )"< mJ.l)

Wo = P[all servers are busy] .E[remaining time I all servers are busy]

= [i: p]. _1 =~ i: (),/Ji.)n = Po(),/J.l)m (4.112)
n=m n mu mti n=mm" mm! m! (l - À.jmJ.l)mJ.l

where Po is given by (4.46) and â = L:k=1 Àk'
This queueing model-and expression (4.111 )-is among the most appli-

cable in urban operations research. Many urban services can be viewed as
multiserver systems with Poisson demands of several types and with (non-
preemptive) priority rules that determine the order in which different types
of demands will be serviced. In fact, the model places no restrictions on how
the types of demand will be defined. Thus, one can, for instance, classify
demands according to the region of a city from which they originate or
according to the type of service requested or both (e.g., ),/j might be the rate
at which j-alarm fires are generated from region i in a city).

The most restrictive assumption in the model is that service times to all
types of demands are assumed to be identical, negative exponential random
variables, but even in cases when this is not quite true, expression (4.111) can
stiU be used to obtain some idea of the leveI of delay experienced by different
types of demands for various priority rankings and for different values of m
(see also Chapter 5 in [LARS 72b]).

4.9.4 Preemptive Priorities

Some results also exist for the case of systems with preernptive priorities,
both for the preemptive-resume and the preemptive-repeat types. The former
refers to the situation in which service to an ejected user, once that user
regains access to a server, continues from the point where it was interrupted
earlier. By contrast, in the latter type of preemptive system, all service received
already is "lost" once a user is ejected from service prior to service cornple-
tion.

The one result that wiIl be presented here for the preemptive case once
again fits the model of Figure 4.15 with a single server. However, it is now
assumed that the service time distribution is negative exponential and, in
addition, that alI classes of users have the same expected service rate u. As
we have noted already, the preemptive resume and the preemptive repeat
cases are now identical because of the lack of memory of the server.

For this model it can be shown (see, e.g., [KLEI 76]) that

for k = 1,2, ... , r (4.113)
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where Wk, as usual, signifies the total expected system tirnet ' for a user in
c1ass k and, as in the previous section, a; = PI + P2 + ... + Pk' More
results for preemptive priority systems are derived in Problem 4.9.

Example 2: Repair Work with Priorities

Consi-ler a repair crew charged with performing work for vehicles of the local
urban transit authority. Vehicles are separated into two types and break-
downs occur in a Poisson manner at rates of ),1 and ),2 for the two types of
vehicles, respectively. Repair times are negative exponential and the average
service time is the same, 1/u, for both types. Assuming that L, + ),z < J.l, we
wish to compare the expected system occupancy time (time spent waiting for
repair plus time under repair) for each type of vehicle for:

1. The case where type 1 vehicles enjoy preemptive priority over type 2
vehicles.

2. The case where type 1 vehicles enjoy nonpreemptive priority over
type 2 vehicles.

3. The case where no priorities exist and breakdowns are repaired in a
FCFS fashion, irrespective of the type of vehicle. '

Solution

Below we use), = ),1 + ),2, WI and Wz for the expected system times for
case 1, Wf and Wr for case 2, and Wfor case 3. Then we have, frorn (4.107),
(4.113), and (4.38):

W _~ __ 1_
I - 1 - PI - J.l - ÀI

W - 1/Ji. _ J.l
2 - (l - PI)(l - PI - pz) - (J.l - ),d(J.l - ),)

W* = (pdJ.l) + (pdJ.l) +..!.. = ..!..J.l + À.2
I 1 - PI J.l J.l J.l - ),1

W* - (pdJ.l) + (Pz/Ji.) + 1-. - 1-.[J.l2 - À.I(fl- ),)]
2 - (l - pd(l - P2) J.l - J.l (J.l - ),d(J.l - ),)

and
- 1w=--J.l-),

It then follows that
(4.114)

as we would expect.

13Note that (4.107) and (4.111) refer to expected waiting time.
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Furthermore,

W = ~ Wt + 1W2 = ~t Wf + 1W! = P ~ À (4.115)

That is, the average system occupancy time for ali breakdowns is identical for
the three cases. The relationship shown in (4.115) is a simpIe example of what
are often referred to in queueing theory as "conservation relations." A more
general result along these !ines and some interesting related questions are
developed in [KLEI 76].

4.10 OUEUEING NETWORKS

We have now completed our review of queueing systems (which we defined
in Section 4.2 as consisting of one service facility that contains a number of
identical servers). In this section we turn our attention to queueing networks
(i.e., to sets of interconnected queueing systems). Interconnected in this case
implies any combination of in series and in paralle! arrangements.

It has already been indicated or implied several times in this chapter that
many urban service systems can be viewed as queueing networks. So far, we
have seen many results which are useful in analyzing individual components
of these networks. The art of queueing network analysis consists of combin-
ing the results (and the analytical techniques) that apply to individual com-
ponents and drawing conclusions that describe the properties ofthe complete
urban service system under consideration.

The word "art" has been used intentionally above. For one should keep
in mind that queueing theory offers very few general results that apply
expressly to queueing networks. Therefore, in solving problems that involve
such networks, much depends on the ingenuity of the analyst in choosing
the "right" simplifying assumptions that preserve the essence of the problem
while making the calculation of an approximate solution possible.

In the next two sections, we shall first present what is perhaps the single
most useful general result in the analysis of queueing networks. We shall then
illustrate by example a widely applicable approach to the analysis of an
extensive family of queueing network models.

4.10.1 Important Property of MIMlm
Oueueing Systems

For M/M/m queueing systems with infinite queue capacity, we now state
a property that often plays an important simplifying role in the analysis of
queueing networks. It is sometimes referred to as the equivalence property for
M/M/m systems.

Sec.4.10 Oueueing Networks 243

Let the arrival process at a M/M/m queueing system with infinite queue
capacity have para meter À. Then, under steady-state conditions (i.e., for
À < mp), the departure process from the queueing system is also Poisson
with parameter À:

The proof of this property is quite involved. However, it is relatively
straightforward for the special case M/M/I (see Problem 4.10).

The implications of the property for the analysis of queueing networks
are quite obvious. If some "cornponent" (facility) of a queueing network can
be modeled as a M/ Mim system with infinite capacity, the "output" of this
"component" is also Poisson with parameter À. That is, users willleave this
specific facility according to a probability distribution identical to the prob-
ability distribution for the arrival of users at the facility.

Thus, if the served users of the M/M/m facility are subsequently routed
to another facility, the arrival process to this other facility is a Poisson
processo In fact, it is clear that if

1. the queueing network consists of, say, k facilities in series (Figure
4.17), each of which contains mt, m2, ••• , m; (m, = 1,2,3, ... )
identical servers with negative exponential service and rates PI (i =
1,2, ... , K);

2. there is infinite queueing space between successive facilities; and

3. the arrival process for the first facility (facility 1 in Figure 4.17) is
Poisson with rate À;

then, under steady-state conditions, the queueing network can be analyzed
as K independent M/ Mim queues and the results of Section 4.6 are directly

Infinite queue capacity

m4
nega tive

exponcntiul OUI
servcrs!n

m}
negative

exponential
servers

m)
nega tive

exponential
servers

Queueing Queueing Queucing Queueing
system 1 system 2 system 3 system 4

FIG U RE 4.17 Poisson input at rate ). at queueing system 1 will result in a Poisson input at
rate ). for ali four queueing systems.
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applicable. The condition for steady state in this case is that À < m.u, for all
i(i=1,2, ... ,K).

Three additional notes:

1. It is not necessary that alI users proceed in series from one facility to
the next. For instance, in a "feedforward" network (i.e. a network
without any feedback loops) of the type shown in Figure 4.18,
departing users from a facility may be divided among N subsequent
facilities according to the probabilities p, (j = 1,2, ... , N; L:f=1 P,
= 1). Here P, represents the probability that a user departing the
facility will go to facility j, with the routing of each user determined
independently. Since the streams of events that result from the
subdivision (in the way described above) or from the mixing together
ofPoisson streams are also Poisson, the M/M/m analysis can also
be used in.such, more complicated cases. 14 Thus, as an example for
the network shown in Figure 4.18, ali ftows between facilities are
Poisson as long as the arrival processes represented by ÀI' À2, and
À3 are Poisson and as long as the assumptions in the equivalence
property hold for each queueing system separately.

2. The equivalence property does not hold for the case of M/M/m

PI + P2 = I

P3 + P4 = I

FIGU RE 4.18 If the conditions of the equivalence property are satisfied for queueing systems
1 through 7. then ali the inputs and outputs in the queueing network above are Poisson with
the indicated rates.

14The reader should be aware that many "subtleties" arise in the analysis no! only of
queueing networks that permit some types of feedback but also of some types of
feedforward networks (see [KLEI 75] [KLEI 76] and, especially, [DISN 79]). For
instance, in networks with feedback, the flow of units within the network may not be
Poisson.
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queueing systems with finite queue capacity. It is simple using a
state-transition diagram to argue intuitively why this is so. Queueing
networks composed of M(M/m queues ofthis type are often analyzed
using the state-transition diagram approach that we shall describe
below.

.3. Tnfortunately, the "negative" statement ofthe equivalence property
is also true: it can be shown [GROS 74] that the only type of service
distribution which results in a Poisson output, if the input to the
queueing system is Poisson, is the negative exponential distribution.
Thus, a necessary condition for the output (the departure process)
of a M/G/m queueing system to be Poisson is that "G = M" (i.e., that
the service time distribution be negative exponential). The only
exception to this ruie is the M/G/oo queueing system. As a result of
this negative side of the equivalence property, the presence in a
queueing system of even a single facility with service times that are
not negative exponential often creates serious analytical problems.15

4.10.2 State- Transition- Diagram Approach
to Networks with Blocking Effects

Whenever the arrival ofusers at a queueing network constitutes a Poisson
process and each queueing system in the network has negative exponential
service times, it is possible, at least in principIe, to obtain the properties of the
queueing network under steady-state conditions by using the following two-
step approach:

STEP 1: Prepare a state-transition diagram that shows all the possible
states that the queueing network (i.e., the co/lection of queueing
systems) can be in and the transitions between states in steady
state.

STEP 2: Write and solve the balance equations for the steady-state prob-
abilities of the queueing network.

This approach will be one of the fundamental ideas that Chapter 5 will
develop with respect to a specific but very rich family of queueing systems.
In this section we shall only illustrate the approach with reference to series
queueing networks with blocking effects. One of the main points that thc

15For practical purposes, however, the output of a M/GIm queueing system can often be
assumed approxirnately Poisson for large m. This is true due to a limit theorem stating
that, when a Iarge number of renewal processes are pooled together, lhe rcsulting
process approaches Poisson, irrespective of the type of lhe individual rcnewal pro-
cesses.
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reader should take note of is how this approach can deal with interactions
between the component queueing systems of the network.

Example 3: In-Series Servers with No Waitlng Space

Consider the queueing network shown in Figure 4.19. Arrivals at the first
facility are Poisson with rate ..1..The two facilities contain single identical
servers with negative exponential service times and mean service time 1/u, No
queues are allowed in front of facility 1 or between the two facilities. Thus,
facility 1 is "blocked" whenever it has comp1eted service to a user while facility
2 is occupied with another user. As a result, prospective users of the queueing
network are turned away not only when, on arrival, they find facility 1 busy,
but aiso when they find it blocked.

Facility Facility

Poisson 1 2

arrivals

FIGURE 4.19 Two service facilities in series.

Solution

Ta describe the state of the network we now need two index numbers: one to
indicate the state of facility 1 and the second to indicate the state of facility 2.
Facility 2 can be either empty (O users in the facility) ar contain 1 user; facility
1 can be empty (O users) or ful! and busy (1 user) or idle but ful! due to blocking
from another user in facility 2. We indicate this last condition by the letter b,
for "blocked." Thus, the possible network states are 00, 01,10, 11, and b1,
with the first index number, by convention, denoting the state of facility 1.
Note that state bO cannot existo

A state-transition diagram for the network of Figure 4.19 is now shown in
Figure 4.20. Using the diagram and recalling the "rate in" = "rate out"
approach that we have taken in order to write steady-state equations of bal-
ance, we have

J.lPOl - À.Poo = O

J.lP10 + J.lPbl - (J.l + À.)POl = O

À.Poo + J.lPll - J.lP10 = O

À.POl - 2J.lPll = O

J.lPll - J.lPbl = O

Poo +POl +P10 +Pll +Pbl = 1

(4.116a)

(4.116b)

(4.116c)

(4.1l6d)

(4.116e)

(4.117)

where the meaning of each of the steady-state probabilities PI) is obvious.
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FIGURE 4.20 State-transition diagram
for the example for Figure 4.22.

Using (4.117) and any four of the five equations in (4.116) and solving for
the five steady-state probabilities, we obtain

2
Poo = F

2p
POl =p

P _ p2 + 2p
10 - F

where F = 3p2 + 4p + 2 and, as usual, p = À./J.l.
Quantities of interest may now be computed using the steady-state prob-

abilities. For instance, for the mean number of users in the system, L, we have

Of more interest, however, are the effects of blocking (and 'of the zero
queueing capacity) on the performance of the queueing network. For exarn-
pie, the mean number of busy servers in the network is

for p e; 1

for p = 1 (4.118)

for p ;» 1
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while the fraction of potential users lost is given by

1
P -2P2

5
9

1-23p for p';:'p 1

for o «: 1

for p = 1 (4.119)

It is interesting to observe how BS and f change as additional queueing
slots are provided in front of one or both service facilities.

Theoretically, this type of approach can, as noted above, be applied to
any queueing network-no matter how complex-as long as the queue
capacities for every element of the network are finite."' When ali queue
capacities are finite, there is a finite number of possible network states
and, consequently, a finite number of balance equations which determine
the steady-state probabilities (see Problem 4.13).

10 practice, however, the number of states increases rapidly with the
number of network elements, while the writing and solving of steady-state
balance equations turns progressively more difficult as the complexity of
network topologies increases. To appreciate this, imagine the simple network
of Figure 4.19 but extended by two more facilities in series: thus, we have an
in-series network consisting of four single-server facilities with no queueing
slots available in front of the first service facility or in the space between
facilities. It then turns out that a full 34 different network states exist,
with each state requiring four index numbers (one for each of the four
servers).

The approach can also be applied to networks where some or ali queue
capacities are infinite. However, the number of balance equations is also
infinite in this case, since we must write one balance equation for each state.
Under these conditions it is possible to obtain closed-forrn solutions for the
steady-state probabilities only if some type of "structure" is detected in the
infinite equations. [We did observe such structures in our discussion of
birth-and-death queueing systems (Sections 4.5 and 4.6) and were thus
able to solve a system with an infinite number of balance equations.] The
hypercube queueing model, which is presented in Chapter 5, is an excellent
example of a queueing system in which this structure-detection approach
applies.

16Remember that this discussion assumes Poisson arrivals at the network and negative
exponential service times for ali servers.

4.11 TIME-DEPENDENT ANALVSIS
OF THE M/M/m QUEUEING SVSTEM

The applications of queueing theory that we have discussed so far in this
chapter have almost invariably used the assumption of steady state and thus
have ignored the time dimension. There are many situations, however, where
it is precisely the fluctuation of congestion effects with time that we are most
interested in.

Consider, for example, the problem of determining personnel require-
ments for the operation oftoll booths at a bridge, tunnel, or highway leading
into a city. It would clearly be foolish to maintain the same number of open
booths from, say, 2 to 4 A.M. as during the peak traffic hours of 7 to 9 A.M.

This situation calls for an analysis that recognizes explicitly the fact that
demand (i.e., the rate at which cars arrive at the toll-collection area) varies
considerabIy over time. SimiIarly, in deciding on the number of police patroI
units to be deployed over a 24-hour period, a police administrator would do
well to take into account the fact that the rate of calls to police dispatchers
is at a peak between 5 P.M. and midnight in most cities and then falls rapidly
to very low levels during the early morning hours.

One way to deal with such problems is to subdivide the time period of
interest into shorter time periods, during which the demand rates and the
service rates can be considered approximately constant and perform a sepa-
rate queueing analysis for each of these shorter time periods, assuming that
the steady-state results are valid within each of them. There are numerous
examples of this type of analysis, including a classical one [EDIE 54] that was
applied to the toll-booth problem that we have just described.

This approach, however, may sometimes be inadequate: the demand
and/or service rates may be changing toa rapidly over time for the steady-
state expressions (which assume the existence of "long-terrn equilibrium con-
ditions") to be valid. The approach also fails if it happens that for one or
more of the short periods of time average demand exceeds the service rate-a
case for which no steady-state expressions existo

In some cases of this type, numerical solution techniques can often be of
some help. We shaIl describe below one such technique as it applies to
M/M/m queueing systems.

The analysis below will be performed with reference to the center-for-
emergency-calls exampIe (see Section 4.6), for which it will be assumed that:

1. The arrival of calls at the M/M/m system is a Poisson process with a
known time-dependent rate .Â.(t) for O ::;; t ::;; T.

2. The m operators/servers are independent and identical, and service
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3.

times are independent and negative exponential with mean u:' (u is
not a function of time).

The queueing system has a capacity of K (K > m) and calls that find
the system full are lost.

The state ofthe system at time t = O is known probabilistically (see
below for further explanation).

4.

Let p.(t), i = O, 1,2, ... , K, denote the probability that at time t there
are n calls. ~rese~t-being answered or waiting for an operator. Using the
s~ate-tra?sltlon diagrarn 4.9, it is then simple to write a system of first-order
differential equations that describe this queueing system [cf. (4.20) and
(4.21)]:

dP (t)--Jt = -Â(t)Po(t) + fl.PI(f)

dP.(t)
([t = Â(t)P._I(I) - [Â(t) + nfl.]P.(t) + (n + 1)fl.P'+I(t)

(4.120a)

for 1 <n< m - 1
dP.(t)
([t = Â(t)P'_1 (t) - [Â(t) + mfl.]P.(t) + mfl.P.+ I(r)

(4.120b)

for m < n < K - 1 (4.120c)

(4.120d)

Given a set of pr~bability values P(O) that describe the state of the queueing
system at t = O [i.e., ~(O) = {Po(O), PI(O), ... ,PxCO)} such that L:;=o p.(O)
= I], the. K + 1 equations (4.120) can be solved iteratively on a computer.
To do t~lS, one. must choose a time interval !::.twhich is sufficiently small to
be cons.lstent with the Poisson assumptions for the arrival and service pro-
cesses (i.e., the probability of two or more user arrivals or service com-
pletions during !::.tmust be very small) and then use the approximation

p.(t + !::.t)= P (t) + dP.(t) . !::.!
n dt n=0,1,2, ... ,K (4.121)

In this way, beginning with P(O), one first solves for P(!::.!) = {Po(!::.!)
PI(!::.!), Pz(!::.t), ... ,PxC!::.t)},then for P(2!::.t),P(3!::.t), and so on for the whol~
p~riod of i.nterest T. This type of numerical solution can be' accomplished
with the aid of standardized computer programs (such as the IBM Con-
tinuous Syste~ M~deling ~rogram-CSMP) which are designed specifically
for accurate iterative solution of systems of differential equations such as
(4.120).
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Once the probabilities P.(t) have been computed, other quantities of
interest can be derived as well. For instance, for the expected number of
calls in queue at time t, we have

K

Lq(t) = L: (n - m)P.(t)
n=m+l

(4.122)

and for the expected waiting time in 1:lequeue for an accepted call that arrives
at time t,

1 K-I

Wit) = - L: (n - m + I)P.(t)mfl. .=m
(4.123)

Exercise 4.7 Argue the validity of (4.123). Why not use the expression
Wq(t) = Lq(t)f Â(/) in this case?

In urban problems, the foregoing time-dependent queueing model arises
most often in situations where the demand rate, Â(t), is periodic with period
1: = 24 hours. This, for example, would be the case for the toll-booth and
police-allocation problems described at the beginning of this section. In that
case it is reasonable to expect and it has been shown [KOOP 72] that the
numerical solution of (4.120) wil! also become periodic eventually, inde-
pendent of the starting conditions P(O), as long as'?

I i'X = - Â(t) dt < mu
1: o

(4.124)

In that case, we shalI have p.(t + 1:) = Pn(t) for aI! t greater than some
threshold value. For relatively low utilization systems, the probabilities Pn(t)
wilI converge to the periodic solution very quickly (e.g., after a few hours of
the first day when •. = 24 hours.) Convergence, however, cannot be verified
until (4.120) have been solved for a second (or third, or more, if necessary)
day.

Although, in order to obtain numerical solutions of (4.120) one must
naturally have a finite number (= K + I) of equations, one can still use a
trial-and-error approach to obtain solutions for cases where no calls/users
can be turned away [provided that (4.124) holds]. AlI one has to do is specify
K to be sufficiently large so that at no time does Px(t), the probability of a full
system, exceed some acceptable value [e.g., PK(t) < 10-4 for ali t]. Problems
with K as high as 600 have been solved at reasonable computer cost [HENG
75]. An application of the MI Mim time-dependent model to thedeployrnent
of police patrol cars through the 'day in New York City is described in
[KOLE 75].

17If (4.124) does no! hold, the queueing system will eventually become saturated.
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4.1 Mode! of a taxi station Consider a taxi station where taxis looking for passen-
gers and passengers looking for taxis arrive according to Poisson processes, with
mean rates per minute of 1 and 1.25. A taxi will wait no matter how many other taxis
are in line, but an arriving passenger waits only if the number of passengers already
waiting for taxis is two or Iess. Assuming steady-state conditions, find:

a. The mean number of taxis waiting for passengers.

b. The mean number of passengers waiting for taxis.

c. The mean number of passengers who in the course of an hour do not join
the waiting line because at Ieast three passengers were already waiting.

4.2 Queueing system with ba!king We have already noted (cf. Section 4.6) that it is
usually difficult to obtain closed-forrn soIutions for queueing systems in which there
is user balking or where the rate of service dcpends on the number of users present.
There are exceptions to this.

a. Consider a single-server system with infinite system capacity, Poisson
arrivals, and negative exponentiaI service times for which the rates of user
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arrivals and of service [cf. (4.58)] are

. À
Ào = n + 1 n = O, 1,2, ...

u; = fl n = 1, 2, 3, ...

(In the above, À is the arrival rate when the system is empty.) Show that

n = O, 1,2, ...

b.
What is the condition for steady state in this case? Find an expression for p.
Suppose we now assume that there is no balking (Àn = À) but that the
service rate depends on the number of users present (u; = Cn• fl for n =
1,2, ... ). Find a form for c, such that the expression for P; becomes iden-
tical, as in part (a). To what c1assical queueing system is this new system
equivalent, as far as the service rate is concerned?

.Find i for case (a). Show that, for this case,c.

4.3 Repairs of MTA buses The metropolitan transit authority of a region wishes to
establish a crew of auto mechanics that will be responsible for repairing the
authority's buses. The crew is stationed at a single location.

Bus breakdowns occur randomly (Poisson process) at a mean rate of one per
hour. The time required to fix a bus has a negative exponential distribution (regard-
less of crew size). The expected repair time required by a one-worker crew would be
2 hours.

The cost per hour for each member of a repair crew is $10.00. The cost that is
attributable to not having a bus in use (i.e., a bus standing at the bus repair shop) is
estimated to be $40.00 per hour. (Both men and buses are on 8-hour days.)

Assume that the mean service rate of the repair crew is proportional to its size.
What should the crew size be in order to minimize the expected total cost of this
operation per hour? Repeat this question but with the mean service rate propor-
tional to the square root of the crew size.

4.4 Waiting at a street intersection Consider the intersection of two city streets
shown in Figure P4.4(1). Both streets are one-way, One of them is designated as the
"prirnary" street and vehic1es on it have priority at the intersection. On the "secon-
dary" street there is a stop sign at the intersection.

Consider a car on the secondary street that arrives at the intersection at a random
time while no other car on the secondary street is waiting to cross the intersection.
Assume that:

1. The car on the secondary street arrives at the intersection at a random time.
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- _Primary
Street

"-
STOP sign

Secondary
Street

The vehic1es on the primary street do not slow down or yield to vehic1es on
the secondary street at the intersection .

The headways, H, between vehic1es on the primary street are independent
and identically distributed random variables with pdf fH(t), expected value
E[H], variance ali, and so on.

4. The car on the secondary street will cross the intersection as soon as a time
gap greater than to (a constant) is perceived before arrival of the next vehic1e
on the primary street (assume that drivers perceive such things correctly).
Note that a car on the secondary street may cross the intersection imrne-
diately upon arrival there, if the remaining time until the arrival of the next
primary-street car at the intersection is greater than to·

2.

3.

Figure P4.4(2) illustrates this whole situation. Let

Y = time between the instant when the car on the secondary street first
arrives at the intersection and the instant when it begins crossing

a. Derive an expression for E[ Y] in terms of flI(t) (and its moments) and t o-

b. Derive an expression for o'/;.
C. Apply your results of parts (a) and (b) to the case where the headways are

negative exponentially distributed [i.e',[H(t) = Àe-Ar for t ~ O]. Show that

E[Y] = ~[eÁI' - (1 + Àto)]
À

1
ai = À'2(eU1' - 2À.toeÁl'-1)

d. Apply your results of parts (a) and (b) to the case where to = 4 seconds and
H is uniformly distributed between 2 and 10 seconds.
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e. Assuming that ali drivers on the secondary street use the same to, does your
result of part (a) apply to ali drivers on the secondary street once they be-
come first in fine, or only to those drivers who find no one else waiting at the
stop sign at the time of their arrival at the intersection? Please explain in a
couple of sentences (no mathematical analysis). What about the case of
pedestrians crossing a street with no traffic Iights (and drivers who do not
slow down)?

4.5 Single-bus transportation system This problem illustrates, once more, one of
the main themes of this book-that the "obvious" thing to do does not always
produce the best results. For severa I types of urban transportation systems (e.g.,
buses, elevator banks, subways, etc.) it is sometimes better to delay some vehicJes
than to let them proceed, as soon as possible, with a "trip." This will result in more
regular headways (between the passage of vehicles from stops), which, in turn,
improves overall system performance. Consider as an example the following simple
situation. A bus "system" consists of a single bus that operates on a route (Figure
P4.5) with a single stop (station A) for picking up passengers, who are then delivered
to other stops along the route. (This could be a primitive model for a local bus sys-
tem in a suburban community during the evening rush hour. The single pickup stop
would be at the train station where commuters from a central business district
return from work.) Define H to be the headway between successive departures of the
bus from station A. Assume that:

1. The time interval, X, between the instant when the bus leaves station A and
the instant when it returns there for the first time is. a discrete random
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variable with

{
0.5

P(X = x} =
0.5

for x = 1

for x = 9

2. Passengers board the bus instantaneously once it returns to station A and
the capacity of the bus is sufficiently large so that no one is ever left out.

Passengers arrive at station A to catch the bus randornly, according to some
probabilistic process which is independent of the location ofthe bus at any
given time.

3.

a. Find the expected time, E[ W], that a random passenger will spend at station
A if the bus always leaves station A immediately after it arrives there and
the passengers board it (instantaneously).

Repeat part (a) for the case in which the bus is held at the station for three
extra time units whenever it returns to station A only one time unit after
leaving:

b.

if x = 1

if x = 9

c.

Note that E[ W] has decreased now despite the fact that the frequency of bus
service has decreased as well.

Assume that it has been decided to use the dispatching strategy

{
ao

H=. 9
if x = 1

if x = 9

at station A, where ao is an unknown constant. Determine the value of ao
that minimizes E[ W].



258 Introduction to Queueing Theory and Its Applications Ch.4

In general, it has been shown that, for any pdf fx(x) for X, the optimal
headway strategy for this problem is to set H = Max (at, X), where at
is the optimal value of the constant ao (note that X is allowed to be any
random variable in this case but that the result above is Iimited to single-bus
systems).

d. In part (c) you found that at = E*[W], where E*[W] is the minimum value
of E[ W]. This is not an accident but a general property of optimal headway
strategies for this problem [OSUN 72]. Does this suggest a good iterative
procedure for solving part (c)?

e. Repeat parts (a) and (c) for the casefx(x) = e= for x ~ o.
A good review and more general results for problems of this type has been

published by Barnett [BARN 78].

4.6 Spatial/y distributed queue with random server location In this problem we
examine a spatialIy distributed queueing system similar to that of Example 1, Sec-
tion 4.7. In the process we shall examine how the "advantage of centrallocation"
(i.e., the benefits of positioning a facility/server at the geographical center of an
urban area) behaves as a function of system utilization. In this problem the server
will be randomly located in the district, in contrast to Example 1, in which it was
centralIy located.

We shall examine here the case in which the rectangular district of Figure 4.10 is
patrolIed by a police car which is dispatched to incidents within the district. Inci-
dents are served in a FCFS manner, with the patrol car traveling from incident to
incident whenever there is a backlog of calls for police assistance. At times when no
pending calls exist and the patrol car is free, itremains stationary at the location of
the last incident that it served, waiting to be dispatched to the next call for assistance.
AlI other assumptions in the problem (e.g., right-angle travei, uniformly distributed
incidents in the district, Poisson demands, service time on the scene, travei speeds,
etc.) are identical to those of Example 1. It wilI be assumed, however, that the dimen-
sions of the district are now 2Xo x 2 Yo miles. This is done to make the results of
this problem comparable to those of Example 1, where the ambulance must make
round trips between the hospital and the incidents that it serves.

a. Obtain expressions for p, L, L; W, and Wq in this case. To avoid any con-
fusion, we specify that the patrol car "begins serving" a particular incident,
as soon as the patrol car begins its trip toward that incident. You should
also assume that successive service times (= travei time + time on the
scene) are statisticalIy independent. [In truth, there is a slight correlation
between successive service times (why?).]

b. Assuming exactly the same numerical values as in Example 1 (numerical
example), prepare a table for p, L, t; W, and Wg, as the rate of calIs per
hour, À, increases. Compare these values to those for the ambulance service
of Example 1. How do these values differ as À increases (p -> I)?

4.7 Planning for a large parking garage A parking garage is planned for a large
airport which is wholIy owned by a city. í his garage will serve the needs of "park-
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and-fly" passengers at one major section of the airport. It has been decided that the
garage's capacity wilI be geared to the peak season of the airport, which consists of
about five consecutive months. The planners believe that the demand (i.e., the num-
ber of cars seeking a parking spot at that section of the airport) can be reasonably
modeled as a Poisson process with a mean, À, of about 2,500 cars per day. The time
during which any given parking spot is occupied by a car is assumed to be a random
variable with some arbitrary pdf, a mean (1/ J1.) = 30 hours, and finite variance. It
has been decided, after much debate, to p~ovide sufficient capacity at the garage so
that "a motorist wilI be able to find a free space there 98 percent of the time"-with
a new system planned to direct motorists to areas with free parking spaces. Assuming
that drivers who are informed, at the time when they seek entry, that the garage is
fulI wilI become discouraged and go somewhere else:

a. Estimate approximately how many parking spaces should be provided at
the garage. Justify your reasoning, possibly with reference to some queueing
theory model.

b. Based on your analysis for part (a)-and provided that alI other assump-
tions in the model are reasonable-discuss which is more important in
planning for the size of the garage: the accuracy of the estimated values of À
and 1/J1., or the probability of parking availability sought (e.g., 98 percent)?

4.8 Derivation of expected waiting times The method used in Section 4.9 for deriv-
ing the expected waiting time Wgk for cIass k users of a M/G/1 system with non-
preemptive priorities is very helpful for many problems involving various queue
disciplines or priorities.

a. Use this method to derive an expression for Wq, the expected waiting time
at a M/G/l system with a last-come, first-served (LCFS) queue discipline.
Assume infinite queue capacity. Your result should of course be the same as
(4.81), the expression for Wq for a M/G/l system with FCFS queue dis-
cipline.

Use this method to derive expressions (4.111) and (4.112) for Wgk in the
case of a M/M/m queueing system with nonpreemptive priorities.

Use the same method for deriving expression (4.113) for Wqk in a M/M/I
system with preemptive priorities.

b.

c.

4.9 Hospital emergency ward with preemptive priorities The lone doctor in the
Puddleduck City Hospital emergency ward encounters two types of patients: emer-
gency and nonemergency patients, who arrive at independent Poisson rates .À.I and
À~, respectively. Their treatment times are independent and exponentialIy distributed
with parameters J1.1 and J1.z, respectively.

If an emergency patient arrives during the treatment of a nonemergency patient,
the latter's treatment is immediately stopped in favor of the emergency patient. The
interrupted treatment is resumed (i.e., from the point at which it was interrupted)
when there are no emergency patients present. The treatment of an emergency
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patient is never interrupted, and within the two groups there is a first-come, first-
served discipline.

a. Find the mean number of emergency patients in the system (LI)'

b. Show that the mean number of nonemergency patients in the system is

L - P2 [1 + fi.2 ( PI )]
2 - 1 - PI - P2 fi. I 1 - PI

where

PI + P2 < 1

c. Assume that À.t! fi. I =)"21 fi.2 <t. Compare the mean waiting times of both
types of patient with and without the preemptive priority system.

Hints: The time a nonemergency patient spends in the emergency ward consists
of three components:

1. The time between her arrival and the next time that a nonemergency
patient receives attention (TI)'

2. The time to complete treatment on ali the nonemergency patients in
front of her.

3. The time from her first receiving attention until the time that the treat-
ment is completed (completion time, T).

Show that

4.10 "Output" of a M/M/I system In this problem you are asked to prove the
important theorem of Section 4.10 for the case of a M/M/I queueing system. Let a
queueing system with a single server have Poisson arrivals at a rate À., infinite queue
capacity, and negative exponential service time with mean l/fi. (fi. > À.). Show that
in the steady state the "output" stream leaving this queueing system is also Poisson
at a rate À..

Hint: What is the pdf for the time between service completions when the
server is continually busy?

4.11 "User-optimal" versus "system-optimal" equilibrium Two different facilities,
A and B, provide the same type of service. Each facility contains a single server with
service times distributed as negative exponential random variables. The mean service
times are 1/fi. I = 1 minute and 1/fi.2 = 4 minutes at facilities A and B, respectively.
Other than the different expected length of service times, the service that A and B
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provide is identical (in terms of quality, cost to the user, etc.). (Think, for instance,
of two truck-weighing and inspection facilities that differ only by the rate at which
they inspect trucks.)

A combined total of À. = 60 customers per hour wish to avail themselves of the
service provided by facilities A and B. The situation is pictured in Figure P4.11.
Arrivals of customers at the critical point are Poisson. At that point each customer
makes a choicz, independently of ali others, on which facility he or she is going to
use. This choice is made without any knowledge of the status of the queue in front of
either facilíty. Let p denote the probability that a random customer chooses facility
A (and 1 - P that he or she chooses B).

a. Consider the case when the same pool of customers use facilities A and B
on a repeated basis (say, once every day). (Think, for instance, of suburban
commuters in a town with two major access roads to the central business
district. Each of these commuters decides every day, independently of ali
others, which of the two roads he or she is going to use that day, without
knowledge of traffic conditions on either road.) Let us assume that each
user is only concerned with minirnizing his or her expected time spent in a
service facility, W (= average waiting time + average service time). It can
be reasonably expected that in the long run (system in steady state and in
equilibrium-as far as the distribution of customers between the two facil-
ities is concerned) the customers will "distribute" thernselves among the two
facilities, in lhe sense that p wi/l stabilize around a specific value, What is that
value of p?

b. Suppose now that your objective is to minimize the total amount of time
(waiting and being serviced) that ali customers spend in either of the two
facilities per unit of time (with the system in the steady state). This is equiva-
Ient to rninimizing, say, the "cost" sufTered by the community each day,
where cost is measured in terms of total commuter hours spent in traffic.
Vou can thus set the value of p yourself (and thus force each arriving custo-
mer, independently, to choose between the two facilities on the basis of
your p). What would you choose as the value of p?

Note: Feel free to use trial and error (rather than an "elegant"
approach) in determining p.
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c. Can you explain intuitively why the answers to parts (a) and (b) are differ-
ent? Can you suggest a situation parallel to the one above in highway
traffic and how it might be possible to achieve the value of p that you found
in part (b) in this case?

4.12 Imposing fees at a congested facility It is often necessary to impose congestion
tolls to assure that expensive transportation facilities (tunnels, bridges, terminal
space at bus terminaIs, etc.) are used efficiently. Consider a city-owned airport and
assume that this airport has a runway that is used only for landings during the peak
traffíc hours. Under peak conditions, the arrivals of airplanes at the vicinity of the
airport are assumed to be Poisson with a rate À. = 55 aircraft/hour. Of these air-
planes, 40 on the average are commercial jets and 15 are small private airplanes
("general aviation"). The pdf for the duration of the service time to a random air-
craft landing on the runway is given by the uniform pdf of Figure P4.12(a).

1
24

PDF for
service times

t (seconds)o 48
(a)

Number of general
aviation aircraft per hour

$ increuse in
landing Ices

(b)

a. Peak-hour conditions occur during 1,000 hours/year and the average cost
of 1 minute's waiting (i.e., "going into a holding pattern" near the airport)
is $12 for commercial jets (this accounts primarily for the extra fuel spent,
the extra flight crew time and extra aircraft maintenance costs). Estimate the
yearly costs to the airlines of peak-hour delays at this runway.

To alleviate peak-hour congestion, the airport's managers are considering
an across-the-board increase in the fees that aircraft pay for using the run-
way ("Ianding fees"). While airline demand is insensitive to moderate in-
creases in landing fees, general aviation demand is expected to drop

b.
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drastically as these fees increase (since there are some good small airports
near the city in question which can be used by small aircraft). In fact, a
study of the general aviation runway users revealed that the relationship
between demand per hour by general aviation and increase in landing fee is
as shown in Figure P4.12(b). What is the most desirable amount of increase
in landing fees from the point of view of the airlines? (Remember that the
airlmes will also be paying the higher fees.)

)

4.13 Queueing network In the queueing network of Figure P4.13, ali service times
are negative exponential and the two arrival processes shown are independent and
Poisson.

In

Q.S.3

Out2 servers
(rate J.l.) each)

In

Q.S.2

There is space for one waiting user.at the indicated point in front of queueing
system 3. Whenever that queueing space is occupied, this "blocks" the departure of
users from system 1 and from system 2. No space for waiting exists in front of either
system 1 or system 2. Prospective users of either system are turned away if that sys-
tem is either busy or blocked at the time of user ar rival.

Write the steady-state balance equations for this queueing network. y'ou will
find it useful to define carefully the states of the network and to draw a state-transi-
tion diagram for it. Assume that if both systems 1 and 2 are "blocked" at any time,
system 1 users receive priority whenever the single waiting space in front of system
3 becomes free.

4.14 Police helicopters and police cars Assume that in a circular city with a radius
of R miles, calls for police service are generated in a Poisson manner at the rate of
À. per hour per city square mile. Calls are uniformly distributed over the city.

The police department is contemplating the purchase of k helicopters to respond
to certain types of police calls. The helicopters will be flying straight to the location
of each incident, at an efTective speed of VII rniles/hr.

The special police cars that are presently used for these calls have an efTective
speed of Vc miles/hr and traveI in right-angle distances, The city is rather large and
its streets have no particular orientation with respect to lhe coordinate axes.

The dispatching strategy that the police controller uses, whether operating a
helicopter-based or a car-based system, is the following. Whenever all service units
are busy, calls for police assistance are placed in a first-corne, first-servcd, infinito-
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capacity queue and the first service unit which becomes available is immediately
dispatched to the first call in the queue. If, on the other hand, more than one service
unit is available, the dispatcher selects one of the available units randomly (with no
consideration to service unit locations) and dispatches it to the next call.

It is also known that the durations of service for incidents serviced by helicopters
or by cars, after arrival on the scene, are random variables with negative exponential
distributions with average service time equal to 1/f.lH and 1/f.lc, respectively. The
durations of service to successive incidents are statistically independent.

Finally, it is known that a unit that completes service to a call remains stationary
until it is dispatched to a new incident.

a. Make the assumption that traveI times to successive incidents for any given
service unit are statistically independent. Also assume steady-state condi-
tions.

Let the criterion for comparison between the k helicopter system and the
m police car system be that fraction of time that a randomly selected service
unit is busy (a server is considered busy if it is either traveling to the scene of
an incident or servicing a call at the scene). Find the value of m for which
the car-based system will most closely match the helicopter system for any
given number k of helicopters.

Your answer should be an expression for m containing only variables
defined above and constants. Please explain your work.

b. For R = 4, VH = 80 mph, Vc = 25 mph, and f.lH = u; = 4 calls per hour,
compute the ratio mjk for your answer in part (a).

c. In part (a), we assume that travei times to successive incidents for any given
service unit are statistically independent.

Is this assumption a correct one? Please explain briefly and c1early in
intuitive terms.

d. Assume now that there are two helicopters (and no police cars in the dis-
trict). Also assume that R/VH ~ 1/f.lH' Find a good approximation for the
probability that, with the system in the steady state, an observer arriving at
a random instant will find both helicopters busy and exactly one call waiting
in the queue. For what condition is your answer true?

e. Under the assumptions of part (d), find the prabability that with the system
in the steady state, the two helicopters will complete service to exactly I
calls during a time interval T.

4.15 Unloading at a warehouse A forklift transfers cargo frorn an intercity truck to
a warehouse with the following operational characteristics (see Figure P4.15):

1. The time spent on loading the forklift (at the truck location, A) is approxi-
mately constant and equal to 15 seconds.

2. Ali cargo from each intercity truck is transferred to the same designated
storage location (B) in the warehouse.
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3.

4.

For a given truck, any storage location in the warehouse is equally likely.

The average unloading time at B, including turning and reversing, is 10
seconds (negligible variance).

The forklift travels at a constant speed of 5 feet per second, and, because of
the warehouse layout, in the east-west and north-south directions only.

Exactly 10 forklift loads are required to empty each truck.

Trucks are served one at a time and leave the dock as soon as they are
emptied; the docking/undocking times for each truck last considerably less
than a roundtrip by a forklift, so that no forklift time is wasted because of
truck maneuvers.

5.

6.

7.

In the following we shall refer to the truck parking lot and the dock as "the
system."

a. Given that one truck arrives at the system every 50 minutes on the average
and that the arrivals foIlow a Poisson process, find the average number of
trucks in the system at any given time and the average time each truck
remains in the system.

b. If two forklifts are used instead of one, answer approximately the questions
in part (a) with an appropriately defined M/G/1 mode!. Assume that the
forklifts do not interfere with one another throughout the operation.

Hint: What happens to the mean and variance of the service time?

c. Use approximate bounds for M/G/2 systems (Section 5.8) to answer the
questions in part (b) and compare these answers with your answers in (b).

4.16 M/Hk/m queueing systems The hyperexponential pdf of order k is the pdf

k
fx(x) = L (X/Â./e-A,,,

/=1
x ~ O, (X/ ~ O, Â./ 2: O

where



266 Introduction to Oueueinq Theory and Its Applications Ch.4

In other words, a hyperexponential pdf can be viewed as the weighted sum of k
distinct negative exponential pdf's.

a. Show that, for the random variable X with hyperexponential pdf,

E[X] = ± (1,1
. 1=1 .À.I

and

b. Show that the coefficient of variation of X,

C2 A cr} _ E[X2] 1 > 1
x = E2[X] - E2[X] - -

Hint: Use the Cauchy-Schwarz inequality,

(L: albl)2 ::;; (L: al)(L: bl)
I I I

for ai, b, real.

Because of the fact that C~ ~ 1, hyperexponential random variables are said to
be "more random" than negative exponential random variables (for which C2 = 1).

c. Consider now a M/H2/1 queueing system with infinite queue capacity

(H2 indicates that service times are second-order hyperexponential random vari-
ables.) Let I = 3 be the arrival rate at the system and let the service time pdf be given
by

f() 2 -2r + 16 -81s t = Te Te t~O

A schematic representation of this system is shown in Figure P4.16. Each user,
upon entrance to the service facility, will receive type 1 service with probability (1,1
or type 2 service with probability (1,2'Whenever either one of the two types of services
is being offered, no other user can obtain access to the facility. What are the values
of (1,1> (1,2, J.l.1> and J.l.2in this case?

Service facility (one server)

Negative
exponential service

times of type 2

xxxxx--+-tC:
Queue
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d. Find i,W, iq, and WQ in this case. Compare with the equivalent quantities
for a M/M/I system with service rate (when busy) equal to the service rate
of this M/H2/1 facility.

e. Carefully draw a state-transition diagram for this M/H2/1 system.

Hint 1: Define states: "O" = the system is empty ; "i, j" = i users are present
(i = 1,2, . , .) and the user currently occupying the service facility is receiving
type j service (j = I, 2).

Hint 2: The rate of transitions from state O to state (1,1) is equal to (l,1.À.; the
rate of transitions from state (2,2) to state (1, I) is equal to (1,1J.l.2'

f. Describe a possible situation in an urban service system context where
M/Hk/1 (or M/Hk/m) models could be applicable.

4.17 Probability that a server is busy We have shown in the text that for a M/M/I
and a M/G/I queueing system with infinite queueing capacity, the probability that
the server is busy is equal to the utilization p (= .À./ J.I.) in steady state.

Show that in the case of a M/M/m system with infinite queueing capacity, the
steady-state probability of any server being busy is still equal to p (= .À./mJ.l.).


