Markov Chains

Consider a system that can be in any one of a finite or countably infinite number
of states. Let & denote this set of states. We can assume that & is a subset of the
integers. The set & is called the state space of the system. Let the system be
observed at the discrete moments oftimen = 0, 1, 2,.. ., and let X, denote the state
of the system at time 7.

Since we are interested in non-deterministic systems, we think of X,, n > 0, as
random variables defined on a common probability space. Little can be said about
such random variables unless some additional structure is imposed upon them.

The simplest possible structure is that of independent random variables. This
would be a good model for such systems as repeated experiments in which future
states of the system are independent of past and present states. In most systems
that arise in practice, however, past and present states of the system influence the
future states even if they do not uniquely determine them.

Many systems have the property that given the present state, the past states have
no influence on the future. This property is called the Markov property, and
systems having this property are called Markov chains. The Markov property is
defined precisely by the requirement that

(1) P(Xn+1 = Xp+1 IXO = X0y v Xn = xn) = P(Xn+1 = Xp+1 IXn = xn)

for every choice of the nonnegative integer » and the numbers x,, . .., x,., each
in &. The conditional probabilities P(X,,; = y | X, = x) are called the transition
probabilities of the chain. In this book we will study Markov chains having
stationary transition probabilities, i.e., those such that P(X,,, = y| X, = x) is
independent of »n. From now on, when we say that X, n > 0, forms a Markov
chain, we mean that these random variables satisfy the Markov property and have
stationary transition probabilities.

The study of such Markov chains is worthwhile from two viewpoints. First,
they have a rich theory, much of which can be presented at an elementary level.
Secondly, there are a large number of systems arising in practice that can be
modeled by Markov chains, so the subject has many useful applications.
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2 Markov Chains

In order to help motivate the general results that will be discussed later, we begin
by considering Markov chains having only two states.

1.1. Markov chains having two states

For an example of a Markov chain having two states, consider a machine
that at the start of any particular day is either broken down or in operating
condition. Assume that if the machine is broken down at the start of the
nth day, the probability is p that it will be successfully repaired and in
operating condition at the start of the (n + 1)th day. Assume also that if
the machine is in operating condition at the start of the nth day, the
probability is g that it will have a failure causing it to be broken down
at the start of the (z + 1)th day. Finally, let 7,(0) denote the probability
that the machine is broken down initially, i.e., at the start of the Oth day.

Let the state O correspond to the machine being broken down and let
the state 1 correspond to the machine being in operating condition. Let
X, be the random variable denoting the state of the machine at time .
According to the above description

P(Xn+1=1IXn=O)=p,

P(Xn+1=0|Xn=1)=q’
and
P(XO — 0) =, 7[0(0).

Since there are only two states, 0 and 1, it follows immediately that
PX,sy =0]X, =0 =1-p,
PXypy =1lX,=1)=1-4q,

and that the probability 7,(1) of being initially in state 1 is given by
o(l) = P(Xp, = 1) = 1 — 7,(0).

1).

From this information, we can easily compute P(X,, = 0) and P(X,
We observe that

PX,;; =0 =PX,=0and X,,;, =0 + PX, = 1land X,,; = 0)
= P(X, = 0)P(X,,, = 0| X, = 0)
+ P(X, = DP(X,+, = 0] X, = 1)
= (1 — pPPX, = 0) + gP(X, = 1)
= (1 - pP(X, = 0) + ¢(1 — P(X, = 0))
=1-p—-9PX,=0) + ¢
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Now P(X, = 0) = 74(0), so

PX;=0=0-p— 9no(0) + ¢
and
PX,=0=(1-p—qPX, =0 +g
=1 -p-g)Pm0) +¢q[l + (1 —p - q)]

It is easily seen by repeating this procedure » times that
n—1
@ PX,=0=(0-p— 90 +q Zo I-p-aq)
=
In the trivial case p = g = 0, it is clear that for all n

P(X, = 0) = n,(0) and P(X, = 1) = no(l).

Suppose now that p + g > 0. Then by the formula for the sum of a
finite geometric progression,

n21(14p—q)f=1—(1_p_q)".
j=o p+gq
We conclude from (2) that

_ — q _ o _ q
® PX=0=—t_+a-p q)@ﬂ» p+3,

and consequently that

@ P ==Lt p— g (m) - L)
pt4q p+t4q
Suppose that p and g are neither both equal to zero nor both equal to 1.
Then 0 < p + g < 2, which implies that [l — p — g| < 1. In this case
we can let n — oo in (3) and (4) and conclude that

(5) lim P(X, =0)=—2 and lim P(X,=1) =P _.
n—o p+q n— o p+q

We can also obtain the probabilities g/(p + ¢) and p/(p + q) by a
different approach. Suppose we want to choose 7,(0) and 7y(1) so that
P(X, = 0) and P(X, = 1) are independent of n. It is clear from (3) and
(4) that to do this we should choose

g p
75(0) = —— and (1) = ——.
p+4q pt+q
Thus we see that if X, » > 0, starts out with the initial distribution

q P
P(Xy = 0) = and P(Xy=1) = ,
° p+aq ° P+q
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then for all »

PX,=0=—2_  and PX,=1)=—-L2_
Pt4q p+4q
The description of the machine is vague because it does not really say
whether X, » > 0, can be assumed to satisfy the Markov property. Let
us suppose, however, that the Markov property does hold. We can use
this added information to compute the joint distribution of X, Xy, ..., X,.
For example, let » = 2 and let x,, x;, and x, each equal 0 or 1. Then

P(Xo = X, X; = x1,and X, = x;)
= P(XO = annXm = xI)P(XZ = leXO — annXm = xl)
= P(Xo = x0)P(X; = x; | Xo = X0)P(X, = x, | Xo = Xp2and X; = x,).

Now P(X, = x,) and P(X; = x, | X, = x,) are determined by p, g,
and 7,(0); but without the Markov property, we cannot evaluate
P(X, = x, | X, = xo and X; = x) in terms of p, ¢, and 7y(0). If the
Markov property is satisfied, however, then

PX, = x,| Xy = xpand X; = x;) = P(X, = x, | X; = xy),
which is determined by p and ¢g. In this case
P(X, = x¢, X; = x, and X, = x,)
= P(Xy, = x)P(X; = x; | Xy = x)P(X; = x, | X; = x)).
For example,
P(X,=0,X;, = l,and X, = 0)
=PX, =0PX;,=1]|X, =0PX,=0|X, =1)
= 7,(0)pg.

The reader should check the remaining entries in the following table,
which gives the joint distribution of X,, X;, and X,.

Xo X4 X, P(Xy = x9, X{ = X1, and X, = x,)
0 0 0 no(0)(1 — p)?

0 0 1 mo(0)(1 — p)p

0 1 0 7o(0)pg

0 1 1 mo(0)p(1 — q)

1 0 0 (1 = m(O)g(l — p)

1 0 1 (1 — 7m(0))gp

1 1 0 1 — 7)1 — 9)g

1 1 1 (1 — 7)1 — ¢)?
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1.2. Transition function and initial distribution

Let X,, n > 0, be a Markov chain having state space &. (The restriction
to two states is now dropped.) The function P(x, y), x € & and y € &,
defined by

(6) P(xay)=P(X1=yIX0=x)s xayeya

is called the transition function of the chain. It is such that

@) P(x,») 20, x,ye¥,

and

(8) YPx =1L =xeX
¥y

Since the Markov chain has stationary probabilities, we see that

©) PXpiy =y | X, =x) = P(x,), n=l

It now follows from the Markov property that

(10) PXpss =31 Xo = Xor..., Xuy = Xy, Xo = X) = P(x, ).

In other words, if the Markov chain is in state x at time », then no matter
how it got to x, it has probability P(x, y) of being in state y at the next
step. For this reason the numbers P(x, y) are called the one-step transition
probabilities of the Markov chain.

The function 7y(x), x € &, defined by

(1 o(x) = P(X, = x), xe <,

is called the initial distribution of the chain. It is such that

(12) no(x) = 0, xe &,
and
13) Y, mglx) = 1.

x

The joint distribution of X, ..., X, can easily be expressed in terms of
the transition function and the initial distribution. For example,

P(Xy = X0, X1 = x1) = P(Xo = x0)P(X; = x; | Xy = X)

= To(Xo) P (X0, X1).
Also,

P(Xy = X0, X; = X1, X, = X3)
= P(Xo = X, X; = x)P(X;, = X, | Xy = X0, X; = X{)
= mo(xo)P(xp, X )P(X, = X, | Xy = X, X; = Xy).
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Since X,, n > 0, satisfies the Markov property and has stationary transition
probabilities, we see that

PX, = x| Xg = x0, X1 = %) = P(X; = x, | X; = xy)
PX; = x,| Xy = x;)
P(x15x2)'

Thus

P(Xy = xo, X; = X1, Xy = X;3) = mo(x0)P(x0, X1)P(x1, X5).
By induction it is easily seen that
14 P(Xo = Xg5. .5 Xy = X,) = nO(XO)P(XO’ xl) e i 6 B xn)'

It is usually more convenient, however, to reverse the order of our
definitions. We say that P(x, ), x € & and y € &, is a transition function
if it satisfies (7) and (8), and we say that ny(x), x € &, is an initial distribu-
tion if it satisfies (12) and (13). It can be shown that given any transition
function P and any initial distribution 7,, there is a probability space and
random variables X, n > 0, defined on that space satisfying (14). It is
not difficult to show that these random variables form a Markov chain
having transition function P and initial distribution 7.

The reader may be bothered by the possibility that some of the condi-
tional probabilities we have discussed may not be well defined. For
example, the left side of (1) is not well defined if

P(Xo = Xgye .o 5 X = x,) =40,
This difficulty is easily resolved. Equations (7), (8), (12), and (13) defining
the transition functions and the initial distributions are well defined, and
Equation (14) describing the joint distribution of X,,..., X, is well
defined. Itis not hard to show that if (14) holds, then (1), (6), (9), and (10)
hold whenever the conditional probabilities in the respective equations are
well defined. The same qualification holds for other equations involving
conditional probabilities that will be obtained later.

It will soon be apparent that the transition function of a Markov chain
plays a much greater role in describing its properties than does the initial
distribution. For this reason it is customary to study simultaneously all
Markov chains having a given transition function. In fact we adhere to
the usual convention that by ““a Markov chain having transition function
P,” we really mean the family of all Markov chains having that transition
function.

1.3. Examples

In this section we will briefly describe several interesting examples of
Markov chains. These'examples will be further developed in the sequel.
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Example 1. Random walk. Let &, &,,... be independent integer-
valued random variables having common density f. Let X, be an
integer-valued random variable that is independent of the &,;’s and set
X, =Xy + & + -+ &, The sequence X, n > 0, is called a random

walk. It is a Markov chain whose state space is the integers and whose
transition function is given by

P(x,y) = f(y — %).
To verify this, let 7, denote the distribution of X,,. Then
PXy = Ky sis 05 Xy = K)
= P(Xy = %g; &4 = Xp — Xgs-+25 Cy = X — Xp_1)
= P(Xo = x9)P(§y = x1 — x0) '+ P, = X%, — X,—41)
= mo(x0) (X1 — Xo) " f (X5 — Xp-1)
= To(X0)P(xXo, X1) * * * P(X,— 1, X,),

and thus (14) holds.

Suppose a ““particle’” moves along the integers according to this Markov
chain. Whenever the particle is in x, regardless of how it got there, it
jumps to state y with probability f(y — x).

As a special case, consider a simple random walk in which f(1) = p,
f(=1) = g, and f(0) = r, where p, g, and r are nonnegative and sum to
one. The transition function is given by

D, y=x+1,

s =x_13
P(x, y) = 3 §=x

0, elsewhere.
Let a particle undergo such a random walk. If the particle is in state x at a
given observation, then by the next observation it will have jumped to
state x + 1 with probability p and to state x — 1 with probability g;
with probability r it will still be in state x.

Example 2. Ehrenfest chain. The following is a simple model of the
exchange of heat or of gas molecules between two isolated bodies. Suppose
we have two boxes, labeled 1 and 2, and d balls labeled 1, 2,..., d.
Initially some of these balls are in box 1 and the remainder are in box 2.
An integer is selected at random from 1, 2, ..., d, and the ball labeled by
that integer is removed from its box and placed in the opposite box.
This procedure is repeated indefinitely with the selections being indepen-
dent from trial to trial. Let X, denote the number of balls in box 1 after
the nth trial. Then X,, n > 0,isa Markovchainon & = {0, 1, 2,..., d}.
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The transition function of this Markov chain is easily computed.
Suppose that there are x balls in box 1 at time n. Then with probability
x/d the ball drawn on the (n + I)th trial will be from box 1 and will be
transferred to box 2. In this case there will be x — 1 balls in box 1 at
time n + 1. Similarly, with probability (¢ — x)/d the ball drawn on the
(n + 1)th trial will be from box 2 and will be transferred to box 1, resulting
in x + 1 ballsin box 1 at time n + 1. Thus the transition function of this
Markov chain is given by

; y=x-1,

s y=x+1,

0, elsewhere.

Note that the Ehrenfest chain can in one transition only go from state x
to x — 1 or x + 1 with positive probability.

A state a of a Markov chain is called an absorbing state if P(a, a) = 1
or, equivalently, if P(a, y) = 0 for y # a. The next example uses this
definition.

Example 3. Gambler's ruin chain. Suppose a gambler starts out
with a certain initial capital in dollars and makes a series of one dollar
bets against the house. Assume that he has respective probabilities p and
g = 1 — p of winning and losing each bet, and that if his capital ever
reaches zero, he is ruined and his capital remains zero thereafter. Let
X,, n > 0, denote the gambler’s capital at time #». This is a Markov chain
in which 0 is an absorbing state, and for x > 1

. y=x-1,
(15) P(x’ J’) =1{D y=x+ 1,
0, elsewhere.

Such a chain is called a gambler’s ruin chain on & = {0, 1,2,...}. We
can modify this model by supposing that if the capital of the gambler
increases to d dollars he quits playing. In this case 0 and d are both
absorbing states, and (15) holds forx = 1,...,d — 1.

For an alternative interpretation of the latter chain, we can assume that
two gamblers are making a series of one dollar bets against each other and
that between them they have a total capital of 4 dollars. Suppose the first
gambler has probability p of winning any given bet, and the second gambler
has probability ¢ = 1 — p of winning. The two gamblers play until one
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of them goes broke. Let X, denote the capital of the first gambler at time
n. Then X,, n > 0, is a gambler’s ruin chain on {0, 1, ..., d}.

Example 4. Birth and death chain. Consider a Markov chain either
on¥ ={0,1,2,...} oron & = {0, 1, ..., d} such that starting from x
the chain will be at x — 1, x, or x + 1 after one step. The transition
function of such a chain is given by

x> y=x'—'19

) Frs = %;
P(x, y) = E ﬁ = x 1
0, elsewhere,

where p., g., and r, are nonnegative numbers such that p, + ¢, + r, = 1.
The Ehrenfest chain and the two versions of the gambler’s ruin chain
are examples of birth and death chains. The phrase “birth and death”
stems from applications in which the state of the chain is the population of
some living system. In these applications a transition from state x to
state x + 1 corresponds to a “birth,” while a transition from state x to
state x — 1 corresponds to a “death.”

In Chapter 3 we will study birth and death processes. These processes
are similar to birth and death chains, except that jumps are allowed to
occur at arbitrary times instead of just at integer times. In most applica-
tions, the models discussed in Chapter 3 are more realistic than those
obtainable by using birth and death chains.

Example 5. Queuing chain. Consider a service facility such as a
checkout counter at a supermarket. People arrive at the facility at various
times and are eventually served. Those customers that have arrived at the
facility but have not yet been served form a waiting line or queue. There
are a variety of models to describe such systems. We will consider here
only one very simple and somewhat artificial model; others will be
discussed in Chapter 3.

Let time be measured in convenient periods, say in minutes. Suppose that
if there are any customers waiting for service at the beginning of any given
period, exactly one customer will be served during that period, and that if
there are no customers waiting for service at the beginning of a period,
none will be served during that period. Let &, denote the number of new
customers arriving during the nth period. We assume that &, &,,... are
independent nonnegative integer-valued random variables having common
density f.
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Let X, denote the number of customers present initially, and forn > 1,
let X, denote the number of customers present at the end of the nth period.
IfX,=0,then X,,; = &,,;andif X, > I, then X, { = X, + &,+; — L.
It follows without difficulty from the assumptions on ¢&,, n > 1, that
X,, n > 0, is a Markov chain whose state space is the nonnegative integers

and whose transition function P is given by

PO, y) = f(»)
and
Px,y) =f(y —x+ 1), x > 1.

Example 6. Branching chain. Consider particles such as neutrons
or bacteria that can generate new particles of the same type. The initial
set of objects is referred to as belonging to the Oth generation. Particles
generated from the nth generation are said to belong to the (n + 1)th
generation. Let X,, n > 0, denote the number of particles in the
nth generation.

Nothing in this description requires that the various particles in a genera-
tion give rise to new particles simultaneously. Indeed at a given time,
particles from several generations may coexist.

A typical situation is illustrated in Figure 1: one initial particle gives rise
to two particles. Thus X, = 1 and X; = 2. One of the particles in the first
generation gives rise to three particles and the other gives rise to one
particle, so that X, = 4. We see from Figure 1 that X3 = 2. Since neither
of the particles in the third generation gives rise to new particles, we
conclude that X, = 0 and consequently that X, = O for all » > 4. In
other words, the progeny of the initial particle in the zeroth generation
become extinct after three generations.

Figure 1
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In order to model this system as a Markov chain, we suppose that each
particle gives rise to ¢ particles in the next generation, where ¢ is a non-
negative integer-valued random variable having density /. We suppose
that the number of offspring of the various particles in the various genera-
tions are chosen independently according to the density f.

Under these assumptions X,,, » > 0, forms a Markov chain whose state
space is the nonnegative integers. State O is an absorbing state. For if
there are no particles in a given generation, there will not be any particles
in the next generation either. For x > 1

P, y) = Py + -+ & =),
where &;,..., ¢, are independent random variables having common
density . In particular, P(1, y) = f(»), y = 0.

If a particle gives rise to ¢ = O particles, the interpretation is that the
particle dies or disappears. Suppose a particle gives rise to ¢ particles,
which in turn give rise to other particles; but after some number of
generations, all descendants of the initial particle have died or disappeared
(see Figure 1). We describe such an event by saying that the descendants
of the original particle eventually become extinct. An interesting problem
involving branching chains is to compute the probability p of eventual
extinction for a branching chain starting with a single particle or,
equivalently, the probability that a branching chain starting at state 1 will
eventually be absorbed at state 0. Once we determine p, we can easily
find the probability that in a branching chain starting with x particles the
descendants of each of the original particles eventually become extinct.
Indeed, since the particles are assumed to act independently in giving rise
to new particles, the desired probability is just p*.

The branching chain was used originally to determine the probability
that the male line of a given person would eventually become extinct. For
this purpose only male children would be included in the various
generations. )

Example 7. Consider a gene composed of d subunits, where d is
some positive integer and each subunit is either normal or mutant in form.
Consider a cell with a gene composed of m mutant subunits and d — m
normal subunits. Before the cell divides into two daughter cells, the gene
duplicates. The corresponding gene of one of the daughter cells is com-
posed of d units chosen at random from the 2m mutant subunits and the
2(d — m) normal subunits. Suppose we follow a fixed line of descent
from a given gene. Let X, be the number of mutant subunits initially
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present, and let X,, » > 1, be the number present in the nth descendant
gene. Then X, n > 0, is a Markov chainon & = {0, 1, 2,...,d} and

P(x, y) = w

(4)

States 0 and d are absorbing states for this chain.

1.4. Computations with transition functions

Let X,, n > 0, be a Markov chain on & having transition function P.
In this section we will show how various conditional probabilities can be
expressed in terms of P. We will also define the n-step transition function
of the Markov chain.

We begin with the formula
(16) P(X g = Kijpops o sis Xpws = Fopsm | Xo = Koy w05 X7 %)
= P(Xp, Xps1) " PXpm—15 Xntm):
To prove (16) we write the left side of this equation as

P(XO =x05"'>Xn+m =xn+m).
P(Xo = Xgp...» X, = X,)

By (14) this ratio equals

To(X0)P(X0s X1) * ** P(Xptm=15 Xn+m)
To(X)P(Xgs X1) * * * P(Xp— 1, Xp)
which reduces to the right side of (16).
It is convenient to rewrite (16) as

(17) P(A/n-l-l = yl,"'an+m = ym]XO = Xogs- - '9Xn—1 = xn—Ian = X)

2

= P(xa yl)P(yD y2) : 'P(ym—la ym)

Let Ay, ..., A,_ be subsets of &. It follows from (17) and Exercise 4(a)
that

(18) P(Xn+1 = V15 - '»Xn+m = ymIXOEAO’- . 'aXn—l eAn—bA/n = x)
= P(xs yl)P(yla yz)-'.P(ym—la ym)

Let By, ..., B, be subsets of #. It follows from (18) and Exercise 4(b)
that

(19) P(Xn+1EBl,...,X,H_mEBm]XOEAO,...,X,,_IEA,,_I,X"=X)
= Y 0 Y P y)P(Ys ¥2) P(Vme 15 Y-

y1€By Ym € Bm
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The m-step transition function P™(x, y), which gives the probability of
going from x to y in m steps, is defined by

(0)  P(x,y) =X Y P(x y)P(yi, y2) e
y1 Ym-1
P( Y25 Ym-1)P(Ym—1> ¥)
for m > 2, by P!(x, y) = P(x, y), and by

P(x, y) = {(1): :ls:wﬁ::re.
We see by setting B, = - = B,_; = & and B,, = {y} in (19) that
21 PXyom =y Xo€Ags. .. Xyo1 €A4,_1, X, = X) = P™(x, p).
In particular, by setting 4g = -+ = 4,_; = &, we see that
(22 PXpim =y | X, = x) = P™(x, y).

It also follows from (21) that

(23) PXyim =y | Xo = x, X, = 2)

Pz, y).

Since (see Exercise 4(c))

P™x, y) = PXpim = ¥ | Xo = X)
=YPX,=z|Xo=%)PX,sn=y1X=x X, =2)

= ZP”(X, Z)P(Xn+m =Dy I XO = X, Xn = Z):

we conclude from (23) that

(24) P*7(x, y) = Y. PX(x, z)P™(z, y).
For Markov chains having a finite number of states, (24) allows us to
think of P" as the nth power of the matrix P, an idea we will pursue in
Section 1.4.2.

Let 7, be an initial distribution for the Markov chain. Since

P(X,=y) = X PXo = x,X, =)

=Y P(Xo = x)P(X, = y | Xo = x),

we see that

(25) P(X, = y) = Y, me(x)P"(x, y).

x

This formula allows us to compute the distribution of X, in terms of the
initial distribution 7, and the n-step transition function P".
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For an alternative method of computing the distribution of X,, observe
that

P(Xn+1 = y) =ZP(Xn = x?Xn+1 = y)
=ZP(Xn=x)P(Xn+1 =y|Xn=x)’

so that
(26) P(X,.1 = y) = ), P(X, = )P(x, ).

If we know the distribution of X, we can use (26) to find the distribution
of X;. Then, knowing the distribution of X, we can use (26) to find the
distribution of X,. Similarly, we can find the distribution of X, by apply-
ing (26) n times.

We will use the notation P,( ) to denote probabilities of various
events defined in terms of a Markov chain starting at x. Thus

Px(Xl ¢a7X2 #aaX3 =a)

denotes the probability that a Markov chain starting at x is in a state a
at time 3 but not at time 1 or at time 2. In terms of this notation, (19) can
be rewritten as

27 P(X,;1€Bi,. .., Xyim€B, | XoeAy,..., Xm1 €A1, X, = X)
= P(X,€B,,..., X, e B,).

1.4.1. Hitting times. Let A be a subset of &. The hitting time
T, of A is defined by

T, = min (n > 0: X, € 4)

if X, € A for some n > 0, and by T, = o0 if X, ¢ 4 for all n > 0. In
other words, T, is the first positive time the Markov chain is in (hits) 4.
Hitting times play an important role in the theory of Markov chains. In
this book we will be interested mainly in hitting times of sets consisting of
a single point. We denote the hitting time of a point a € & by T, rather
than by the more cumbersome notation Ti,.

An important equation involving hitting times is given by

@)  P(x)) = Z P(T, = mP"™(y,y), n= 1.

In order to verify (28) we note that the events {T, = m, X, = y},
1 < m < n, are disjoint and that

{Xn = y} = mgl {Ty =m, X, = y}~
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We have in effect decomposed the event {X, = y} according to the hitting
time of y. We see from this decomposition that

Pi(x, y) = P(X, = y)

M=

P(T, = m, X, = y)

1

m

n

Zipx(:l—;:m)P(Xn:leO=x:T;:=m)

ZIPx(’Ty=m)P(Xn=yIXO=x’X1 ¢y3'--9
Xm-—l 75.)’, Xm=y)

P(T, = m)P*""(y, y),

1
ﬁM:s

and hence that (28) holds.

Example 8. Show that if @ is an absorbing state, then P"(x, @) =
P(T, < n),n =1

If a is an absorbing state, then P""™(a,a) = 1 for 1 < m < n, and
hence (28) implies that

Pix, @) = 3 P(T, = mP""(a, 0

Y PAT, = m) = P(T, < n)

Observe that
Px(Ty = 1) = Px(Xl = y) = P(x’y)
and that

Px(’Ty=2)=;Px(Xl__-Z’XZ:y):;P(x,z)P(Zay)'

zZFYy ZTY

For higher values of n the probabilities P, (T, = n) can be found by using
the formula

29) P(T,=n+ 1) = Y, P(x, z)P(T, = n), n =1

zZFy
This formula is a consequence of (27), but it should also be directly
obvious. For in order to go from x to y for the first time at time » + 1,
it is necessary to go to some state z # y at the first step and then go from
z to y for the first time at the end of » additional steps.
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1.4.2. Transition matrix. Suppose now that the state space & is
finite, say & = {0, 1,...,d}. In this case we can think of P as the
transition matrix having d + 1 rows and columns given by

0 7
0[P0,0) - P,d)
d|P@do0) - PW@ d)

For example, the transition matrix of the gambler’s ruin chain on
{0, 1,2, 3} is

012 3
o1 0 0 O
11g 0 p O
210 g 0 p
3]0 0 0 1

Similarly, we can regard P" as an n-step transition matrix. Formula (24)
with m = n = 1 becomes

P(x, y) = Y, P(x, z)P(z, y).

Recalling the definition of ordinary matrix multiplication, we observe
that the two-step transition matrix P? is the product of the matrix P with
itself. More generally, by setting m = 1 in (24) we see that

(30) P i(x, y) = Y PY(x, z)P(z, y).

z

It follows from (30) by induction that the n-step transition matrix P" is
the nth power of P.

An initial distribution 7, can be thought of as a (d + 1)-dimensional
row vector

mo = (10(0); . . ., mo(d)).
If we let &, denote the (4 + 1)-dimensional row vector
n, = (PX, =0),..., P(X, = d)),
then (25) and (26) can be written respectively as
n, = meP"
and
Mpr1 = T, P.

The two-state Markov chain discussed in Section 1.1 is one of the few
examples where P" can be found very easily.
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Example 9. Consider the two-state Markov chain having one-step
transition matrix

=[3 )
q 1—-gq

where p + g > 0. Find P".

In order to find P*(0, 0) = Py(X, = 0), we set 7,(0) = 1 in (3) and

obtain
PO =L +0-p—gr—2—.
P+q P+4q
In order to find P"(0, 1) = Py(X, = 1), we set (1) = 0 in (4) and
obtain

. P n_ D
PON=—"—-0-p-—q"——.
p+yq p+q

Similarly, we conclude that

PPLO) = =2 e il = P — Pt
p+4q p+q

and

P, y=—L_ 4+ -p-gqr—21_.
p+4q p+4q

It follows that

pr_ 1 [q p]+(l—p—q)[ P —p]_
p+qld P p+q —q q

1.5. Transient and recurrent states

function P. Set

Let X,, n > 0, be a Markov chain having state space % and transition

pxy = Px(’Ty < w)'

Then p,, denotes the probability that a Markov chain starting at x will
be in state y at some positive time. In particular, p,, denotes the prob-
ability that a Markov chain starting at y will ever return to y. A state y is
called recurrent if p,, = 1 and transient if p,, < 1. If y is a recurrent state,
a Markov chain starting at y returns to y with probability one. If y is a
transient state, a Markov chain starting at y has positive probability 1 —
p,y Of never returning to y. If y is an absorbing state, then P(T, = 1) =
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P(y,y) = 1 and hence p,, = 1; thus an absorbing state is necessarily
recurrent.

Let 1,(2), z € &, denote the indicator function of the set {y} defined by

_ | z=y,

1,(2) = 0, z # y.

Let N(y) denote the number of times » > 1 that the chain is in state y.

Since 1,(X,) = 1if the chain is in state y at time » and 1,(X,) = 0 other-
wise, we see that i

(31D N(y) = Zl 1,(X,).
The event {N(y) > 1} is the same as the event {T,, < oo}. Thus
P(N(y) 2 1) = P(T, < ©) = py,.

Let m and n be positive integers. By (27), the probability that a Markov
chain starting at x first visits y at time m and next visits y » units of time
later is P(T, = m)Py(T, = n). Thus

P(N(y») 22 = Z_jl ZI P(T, = m)P(T, = n)
= ( Zl PT, = m)) (Zl P(T, = n))
= PxyPyy
Similarly we conclude that
(32) PN(y) = m) = pyply !, m=1

Since
P(N(y) =m) = P(N(y) 2m) — P(N(p) 2m + 1),
it follows from (32) that

(33) PN(y) = m) = pypyy ‘(1 = py),  m =1
Also

P(N(y) =0)=1—=P(N() =),
so that

These formulas are intuitively obvious. To see why (33) should be true,
for example, observe that a chain starting at x visits state y exactly m
times if and only if it visits y for a first time, returns to y m — 1 additional
times, and then never again returns to y.
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We use the notation E,( ) to denote expectations of random variables
defined in terms of a Markov chain starting at x. For example,

(35) E\(1,(X,)) = P(X, = y) = P(x, ).

It follows from (31) and (35) that

E(N(¥))

E (£ 1o0)

3 B0,

21 P'(x, y).

Set

0

G(x, ») = BN = X P'(x, )
Then G(x, y) denotes the expected number of visits to y for a Markov
chain starting at x.

Theorem 1 (i) Let y be a transient state. Then

P(N(y) < ©) =1
and

(36) Gix,y) =2, xes,
1 - Pyy

which is finite for all x € &.

(ii) Let y be a recurrent state. Then P (N(y) = o) =1 and
G(y, y) = oo. Also

37 P(N(») = ©) = P(T, < o) = p,,, xe <.
If py, = 0, then G(x, y) = 0, while if p,, > 0, then G(x, y) = oo.

This theorem describes the fundamental difference between a transient
state and a recurrent state. If y is a transient state, then no matter where
the Markov chain starts, it makes only a finite number of visits to y and
the expected number of visits to y is finite. Suppose instead that y is a
recurrent state. Then if the Markov chain starts at y, it returns to y
infinitely often. If the chain starts at some other state x, it may be im-
possible for it to ever hit y. If it is possible, however, and the chain does
visit y at least once, then it does so infinitely often.
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Proof. Let y be a transient state. Since 0 < p,, < 1, it follows from
(32) that

P(N(y) = 00) = lim PN(y) = m) = lim p,p%" = 0.

m— o m— oo

By (33)

E.(N(y))

Y. mP(N(y) = m)

m=

G(x, y)

I
L

. mpxyp;ny_l(l - pyy)' ‘
Substituting # = p,, in the power series

i mm~1 i
m=1

T @—

we conclude that

G(x, y) = Py < op.

l_yy

This completes the proof of (i).
Now let y be recurrent. Then p,, = 1 and it follows from (32) that

P(N(y) = ) = lim P(N(y) = m)

m— oo

= lim p,, = p,,

m— o

In particular, P(N(y) = o) = 1. If a nonnegative random variable has
positive probability of being infinite, its expectation is infinite. Thus

G(J, y) = E(N(y) = .

If p,, = 0O, then P.(T, = m) = O for all finite positive integers m, so (28)
implies that P"(x,y) = 0, n > 1; thus G(x,y) = 0 in this case. If
pxy > 0, then P (N(y) = o) = p,, > 0 and hence

G(x, y) = E(N(¥) = co.

This completes the proof of Theorem 1. [ |
Let y be a transient state. Since
il P'(x, y) = G(x, y) < o0, xe 4,
we see that

(38) lim P'(x,y) =0, xe.

n—oo
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A Markov chain is called a transient chain if all of its states are transient
and a recurrent chain if all of its states are recurrent. It is easy to see that a
Markov chain having a finite state space must have at least one recurrent
state and hence cannot possibly be a transient chain. For if & is finite
and all states are transient, then by (38)

0= ) Ilim Px,y)

YESL n—ow

lim Y P"x,y)

n-»o yes¥

= lim P(X, € &)

n—oo

Iim 1 =1,

n— oo

which is a contradiction.

1.6. Decomposition of the state space

Let x and y be two not necessarily distinct states. We say that x leads to
yif p,, > 0. Itisleft as an exercise for the reader to show that x leads to
y if and only if P"(x, y) > 0 for some positive integer n. It is also left to
the reader to show that if x leads to y and y leads to z, then x leads to z.

Theorem 2 Let x be a recurrent state and suppose that x leads
to y. Then y is recurrent and p,, = p,, = 1.

Proof. We assume that y # x, for otherwise there is nothing to prove.
Since
P(T, < ©) = p,, > 0,

we see that P.(T, = n) > 0 for some positive integer n. Let n, be the
least such positive integer, i.c., set

39) no = min (n > 1: P(T, = n) > 0).

It follows easily from (39) and (28) that P"(x, y) > 0 and

(40) P™(x,y) = 0, 1 < m < ny.

Since P"(x, y) > 0, we can find states y,,..., y,,—; such that

PXy = Y1503 Xpgmt = Vno—1>Xpg = 9) = P(%,91) " P(Yo-1, %) > 0.

None of the states yy, ..., y,,—1 €quals x or y; for if one of them did equal
x or y, it would be possible to go from x to y with positive probability in
fewer than n, steps, in contradiction to (40).
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We will now show that p,, = 1. Suppose on the contrary that p,, < 1.
Then a Markov chain starting at y has positive probability 1 — p,. of
never hitting x. More to the point, a Markov chain starting at x has the
positive probability

P(X, yl) e P(,Vno—h y)(l - pyx)

of visiting the states y;, ..., ¥,,—1, ¥ successively in the first n, times and
never returning to x after time »,. But if this happens, the Markov chain
never returns to x at any time »n > 1, so we have contradicted the
assumption that x is a recurrent state.

Since p,, = 1, there is a positive integer n, such that P™(y, x) > 0.
Now

P"1+"+"0(y’ y) = Py(Xn1+n+no = y)

= Py(an = X, Xn1+n = x: Xn1+n+no = y)

= P"(y, x)P"(x, x)P"(x, y).
Hence

o0

Gy, = Y Py

n=ny+1+ng

Il
:ﬁMs

Pn1+n+no(y’ y)
1

> P(y, )P"(x,y) X P'(x, %)

= P"(y, x)P"(x, y)G(x, x) = + o0,
from which it follows that y is also a recurrent state.
Since y is recurrent and y leads to x, we see from the part of the
theorem that has already been verified that p,, = 1. This completes the
proof. ]

A nonempty set C of states is said to be closed if no state inside of C
leads to any state outside of C, i.e., if

41) Pxy = 0, xeC and y ¢ C.
Equivalently (see Exercise 16), C is closed if and only if
(42) P'(x,y) =0, xeC,y¢C,and n > 1.

Actually, even from the weaker condition

(43) P(x,y) =0, xeC and y ¢ C,

we can prove that C is closed. For if (43) holds, then for x e Cand y ¢ C
PX(x,y) = Y P(x, 2)P(z, )

zeS

Z P(xa Z)P(Za y) =0,
zeC
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and (42) follows by induction. If C is closed, then a Markov chain
starting in C will, with probability one, stay in C for all time. If ¢ is an
absorbing state, then {a} is closed.

A closed set C is called irreducible if x leads to y for all choices of x
and y in C. It follows from Theorem 2 that if C is an irreducible closed
set, then either every state in C is recurrent or every state in C is transient.
The next result is an immediate consequence of Theorems 1 and 2.

Corollary 1 Let C be an irreducible closed set of recurrent
states. Then p,, = I, P(N(y) = ©) = 1, and G(x, y) = o for
all choices of x and y in C.

An irreducible Markov chain is a chain whose state space is irreducible,
that is, a chain in which every state leads back to itself and also to every
other state. Such a Markov chain is necessarily either a transient chain or
a recurrent chain. Corollary 1 implies, in particular, that an irreducible
recurrent Markov chain visits every state infinitely often with probability
one.

We saw in Section 1.5 that if & is finite, it contains at least one recurrent
state. The same argument shows that any finite closed set of states
contains at least one recurrent state. Now let C be a finite irreducible
closed set. We have seen that either every state in C is transient or every
state in C is recurrent, and that C has at least one recurrent state. It
follows that every state in C is recurrent. We summarize this result:

Theorem 3 Let C be a finite irreducible closed set of states.
Then every state in C is recurrent.

Consider a Markov chain having a finite number of states. Theorem 3
implies that if the chain is irreducible it must be recurrent. If the chain is
not irreducible, we can use Theorems 2 and 3 to determine which states
are recurrent and which are transient.

Example 10. Consider a Markov chain having the transition matrix

012345
0[1 000 0 0]
12 32000
2003 ¢ 404
3]0 00 3% % 1
410001 0 1
50000 % 0 3]

Determine which states are recurrent and which states are transient.
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As a first step in studying this Markov chain, we determine by inspection
which states lead to which other states. This can be indicated in matrix
form as

coec+ 4+ + o
oo+ + o =
co o+ + o N
+F + + S+ e W
+++++ 0 »
++ +++ 0 w

(O S R ™)

The x, y element of this matrix is + or 0 according as p,, is positive or
zero, i.e., according as x does or does not lead to y. Of course, if
P(x, y) > 0, then p,, > 0. The converse is certainly not true in general.
For example, P(2, 0) = 0; but

P%2,0) = P, DP(1,0) = 11 = & > 0,

so that p,q > 0.

State 0 is an absorbing state, and hence also a recurrent state. We see
clearly from the matrix of +’s and 0’s that {3, 4, 5} is an irreducible closed
set. Theorem 3 now implies that 3, 4, and 5 are recurrent states. States 1
and 2 both lead to 0, but neither can be reached from 0. We see from
Theorem 2 that 1 and 2 must both be transient states. In summary,
states 1 and 2 are transient, and states 0, 3, 4, and 5 are recurrent.

Let & rdenote the collection of transient states in &, and let & denote
the collection of recurrent states in &. In Example 10, ¢ = {I, 2} and
Fr = {0,3,4,5}. The set L can be decomposed into the disjoint ir-
reducible closed sets C; = {0} and C, = {3,4,5}. The next theorem
shows that such a decomposition is always possible whenever &3 is
nonempty.

Theorem 4 Suppose that the set Sy of recurrent states is
nonempty. Then Sy is the union of a finite or countably infinite
number of disjoint irreducible closed sets Cy, C,,. . ..

Proof. Choose x € ¥, and let C be the set of all states y in % such
that x leads to y. Since x is recurrent, p, . = 1 and hence x € C. We will
now verify that C is an irreducible closed set. Suppose that y is in C and
v leads to z. Since y is recurrent, it follows from Theorem 2 that z is
recurrent. Since x leads to y and y leads to z, we conclude that x leads
to z. Thus z is in C. This shows that C is closed. Suppose that y and z
are both in C. Since x is recurrent and x leads to y, it follows from
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Theorem 2 that y leads to x. Since y leads to x and x leads to z, we
conclude that y leads to z. This shows that C is irreducible.

To complete the proof of the theorem, we need only show that if C and
D are two irreducible closed subsets of &, they are either disjoint or
identical. Suppose they are not disjoint and let x be in both C and D.
Choose y in C. Now x leads to y, since x is in C and C is irreducible.
Since D is closed, x is in D, and x leads to y, we conclude that y is in D.
Thus every state in C is also in D. Similarly every state in D is also in
C, so that C and D are identical. |

We can use our decomposition of the state space of a Markov chain to
understand the behavior of such a system. If the Markov chain starts out
in one of the irreducible closed sets C; of recurrent states, it stays in C;
forever and, with probability one, visits every state in C; infinitely often.
If the Markov chain starts out in the set of transient states &, it either
stays in & forever or, at some time, enters one of the sets C; and stays
there from that time on, again visiting every state in that C; infinitely often.

1.6.1 Absorption probabilities. Let C be one of the irreducible
closed sets of recurrent states, and let po(x) = P.(T, < o0) be the prob-
ability that a Markov chain starting at x eventually hits C. Since the
chain remains permanently in C once it hits that set, we call p-(x) the
probability that a chain starting at x is absorbed by the set C. Clearly
pc(x) = 1, xe C, and p(x) = 0 if x is a recurrent state not in C. It is
not so clear how to compute p.(x) for xe &, the set of transient
states.

If there are only a finite number of transient states, and in particular if &
itself is finite, it is always possible to compute pq(x), x € &, by solving a
system of linear equations in which there are as many equations as
unknowns, i.e., members of & ;. To understand why this is the case,
observe that if x € &, a chain starting at x can enter C only by entering
C at time 1 or by being in & at time 1 and entering C at some future time.
The former event has probability 3, P(x, ¥) and the latter event has
probability 3 ... P(x, ¥)pc(y). Thus

(44) pcx) = Y P(x,») + Y P, pp(y), xeFr.

yeC yeLr

Equation (44) holds whether & is finite or infinite, but it is far from clear
how to solve (44) for the unknowns pc(x), x € &1, when & is infinite. An
additional difficulty is that if & isinfinite, then (44) need not have a unique
solution. Fortunately this difficulty does not arise if & is finite.
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Theorem 5 Suppose the set &1 of transient states is finite and
let C be an irreducible closed set of recurrent states. Then the system
of equations

45 f(x) = ZC P(x, y) + % P(x, nf(y), xe€Fq,
Y€ yefr

has the unigue solution

(46) f(x) = pc(x), xe &y
Proof. If (45) holds, then

f) = L P0A+ T P f@  yer

Substituting this into (45) we find that
f® =Y P, )+ Y ¥ P y)P(,2)
>

peC ye&¥T zeC

+ Y X P Py, D)f(2).

YeEFT zE€LT
The sum of the first two terms is just P.(7. < 2), and the third term
reduces to Y., P*(x, z)f(z), which is the same as 3 ... P*(x, »)f ().
Thus
J&) =P(Tc <2) + Y, Px, »f().

ye&Lr
By repeating this argument indefinitely or by using induction, we conclude
that for all positive integers n

(47) fx) = P(Tc < n) + E; P'x, f(y), xer

Since each y € & is transient, it follows from (38) that
(48) lim P*(x, y) = 0, xe¥ and ye Py
According to the assumptions of the theorem, & ;. is a finite set. It therefore
follows from (48) that the sum in (47) approaches zero as n — oo. Conse-
quently for x e &

f(x) = lim P(T¢ < n) = P(Tc < ) = pc(x),

n—o

as desired. i

Example 11. Consider the Markov chain discussed in Example 10.
Find
Pio = P{O}(l) and P20 = P{o>(2)~
From (44) and the transition matrix in Example 10, we see that p,, and
p»o are determined by the equations

Pio = % + 3p10 + %P20
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and
P20 = $P10 + %P20-
Solving these equations we find that p,;, = £ and p,, = L.

By similar methods we conclude that p(; 4 5,(1) = 2and p;3 4,5(2) = %
Alternatively, we can obtain these probabilities by subtracting pp(1)
and p,(2) from 1, since if there are only a finite number of transient
states,

(49) Z pc(x) = 1, xe€SLr.
To verify (49) we note that for x € ¥,

Z pci(x) = Z Px(TC,- < w) = Px(T.S"R < w)'
Since there are only a finite number of transient states and each transient
state is visited only finitely many times, the probability P,(T,, , < oo) that
a recurrent state will eventually be hit is 1, so (49) holds.

Once a Markov chain starting at a transient state x enters an irreducible
closed set C of recurrent states, it visits every state in C. Thus

(50) Pxy = Pc(X), xe & and yeC.

It follows from (50) that in our previous example

[N

Piz = Pia = Pis = P(3,4,5}(1) =

and

P23 = Pas = P25 = Pa.5(2) = £
1.6.2. Martingales. Consider a Markov chain having state space
{0, ..., d} and transition function P such that

d

(51) Y yP(x,p)=x, x=0,...,d.

y=0
Now

E[Xn+1 | Xo = Xo5 o vy Xpog = Xy, X, = x]

M=

OyP[Xn+1 = yIXO =x0>---aXn—1 =xn—17Xn=x:|

<
a

= yP(x, y)
0

y

]

by the Markov property. We conclude from (51) that
(52) E[Xn+1 | Xo = X505 Xyoy = X1, X, = X] =X,

i.e., that the expected value of X, given the past and present values of
Xo, . . ., X, equals the present value of X,. A sequence of random variables
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having this property is called a martingale. Martingales, which need not be
Markov chains, play a very important role in modern probability theory.
They arose first in connection with gambling. If X, denotes the capital of a
gambler after time » and if all bets are “fair,” that is, if they result in zero
expected gain to the gambler, then X,, n > 0, forms a martingale.
Gamblers were naturally interested in finding some betting strategy, such
as increasing their bets until they win, that would give them a net expected
gain after making a series of fair bets. That this has been shown to be
mathematically impossible does not seem to have deterred them from
their quest.
It follows from (51) that

d
Y, PO, y) =0,
y=0

and hence that P(0,1) =--- = P(0,d) = 0. Thus 0 is necessarily an
absorbing state. It follows similarly that d is an absorbing state. Consider
now a Markov chain satisfying (51) and having no absorbing states other
than 0 and d. It is left as an exercise for the reader to show that under
these conditions the states 1,...,d — 1 each lead to state 0, and hence
each is a transient state. If the Markov chain starts at x, it will eventually
enter one of the two absorbing states 0 and 4 and remain there
permanently.
It follows from Example 8 that

E(X,) = ) yP(X, =)

Il
0= ips

; yP'(x, y)

-
Il
-

yP'(x, y) + dP"(x, d)

I
il

=

d—1

= Y yP'(x,y) + dP(T,; < n).

y=1
Since states 1,2,...,d — 1 are transient, we see that P"(x, y) —» 0 as
n—oofory=1,2,...,d — 1. Consequently,

lim E(X,) = dP(T; < o) = dp,,.

On the other hand, it follows from (51) (see Exercise 13(a)) that EX, =
EX,_, =--- = EX, and hence that E(X,) = x. Thus

lim E(X,) = x.

n— oo
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By equating the two values of this limit, we conclude that

X
(53) pa=", x=0...4d

Since pyo + pxg = 1, it follows from (53) that

=

Po=1—7=, ® = 00050

IS

Of course, once (53) is conjectured, it is easily proved directly from
Theorem 5. We need only verify that forx = 1,...,d — 1,

ity
54) = P(x,d) + ;1 gP(x, »)-

x
d

Clearly (54) follows from (51).
The genetics chain introduced in Example 7 satisfies (51) as does a

gambler’s ruin chain on {0, 1,..., d} having transition matrix of the
form
1 0 - 07
$ 04 :
- 3 0 4
30 4
| 0 - 0 1]

Suppose two gamblers make a series of one dollar bets until one of them
goes broke, and suppose that each gambler has probability 4 of winning
any given bet. If the first gambler has an initial capital of x dollars and
the second gambler has an initial capital of d — x dollars, then the second
gambler has probability p,, = x/d of going broke and the first gambler
has probability 1 — (x/d) of going broke.

1.7. Birth and death chains

For an irreducible Markov chain either every state is recurrent or every
state is transient, so that an irreducible Markov chain is either a recurrent
chain or a transient chain. An irreducible Markov chain having only
finitely many states is necessarily recurrent. It is generally difficult to
decide whether an irreducible chain having infinitely many states is
recurrent or transient. We are able to do so, however, for the birth and
death chain.
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Consider a birth and death chain on the nonnegative integers or on
the finite set {0, ..., d}. In the former case we set d = o0. The transition
function is of the form

x> y =X - 1:
Px,y) ={re y=x,
P Yy=x+1,

where p, + g, + r, = 1forxe &, g, =0,and p, = 0if d < c0. We
assume additionally that p, and g, are positive for 0 < x < d.
For g and b in & such that a < b, set

u(x) = P(T, < Tp), a<x<b,

and set u(@) = 1 and u(p) = 0. If the birth and death chain starts at y,
then in one step it goesto y — 1, y, or y + 1 with respective probabilities
gy, Iy, or p,. It follows that

(55 u(y) =qu(y — 1)+ ru(y) +puy+1, a<y<b

Since r, = 1 — p, — gq,, we can rewrite (55) as

56) u(y+1)—u(=L@y —uy-1), a<y<b

Dy

Set yo = 1 and

(57) y,=2"% o<y <d
P D,

From (56) we see that

u(y + 1) —u(y) = 2 @) —u(y - 1), a<y<b,

'})y—l

from which it follows that

wy+n—ww=hﬂmflwm+n—wm
Ya y—1

= (u@a + 1) — u(a)).

a

Consequently,

(58) u(y) —u(y + ) =@ —u@+1), a<y<b
Summing (58) on y = a,...,b — 1 and recalling that u(a) = 1 and
u(b) = 0, we conclude that

u(a) — u(a + 1) _ 1

b—1

Va ol
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Thus (58) becomes

u(y)—u(y+1)=——bz)y1 , a=<y<b

y=a Iy
Summing this equationony = x,..., b — 1 and again using the formula
u(b) = 0, we obtain
b—1 y
u(x) ==77, a < x < b.
y a Ty

It now follows from the definition of u(x) that

b
(59) Px(T,,<T,,)-—Zb"1‘y , a<x<bh.

yayy

By subtracting both sides of (59) from 1, we see that

(60) PAT,<T) =222 4<x<h.
y=a Vy

Example 12. A gambler playing roulette makes a series of one dollar
bets. He has respective probabilities 9/19 and 10/19 of winning and losing
each bet. The gambler decides to quit playing as soon as his net winnings
reach 25 dollars or his net losses reach 10 dollars.

(a) Find the probability that when he quits playing he will have won
25 dollars.

(b) Find his expected loss.

The problem fits into our scheme if we let X, denote the capital of the
gambler at time » with X, = 10. Then X,, n > 0, forms a birth and death
chain on {0, 1, ..., 35} with birth and death rates

P = 9/19, 0<x< 35
q, = 10/19, 0<x < 35

and

States 0 and 35 are absorbing states. Formula (60) is applicable with
a=0,x =10, and b = 35. We conclude that

y, = (10/9), 0 <y < 34,
and hence that

35-0 10/ _ (109 =1 _ 0

Py(T35s < Ty) = 3% (1097 (10/9)%° — 1

Thus the gambler has probability .047 of winning 25 dollars. His expected
loss in dollars is 10 — 35(.047), which equals $8.36.
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In the remainder of this section we consider a birth and death chain
on the nonnegative integers which is irreducible, i.e., such that p, > 0
for x > 0 and ¢, > 0 for x > 1. We will determine when such a chain
is recurrent and when it is transient.

As a special case of (59),

1

n—1
y=0 Yy

(61) P(To<T)=1- 5 n > 1.

Consider now a birth and death chain starting in state 1. Since the birth
and death chain can move at most one step to the right at a time (con-
sidering the transition from state to state as movement along the real
number line),

(62) 1 =T, < T; <++-.

It follows from (62) that {T, < T,}, n > 1, forms a nondecreasing
sequence of events. We conclude from Theorem 1 of Chapter 1 of
Volume I* that

(63) lim Py(T, < T,) = P(Ty < T, for some n > 1).

Equation (62) implies that T, > n and thus T, - o0 as n — o0; hence the
event {T, < T, for some n > 1} occurs if and only if the event {T, < 0}
occurs. We can therefore rewrite (63) as

(64) lim Py(T, < T,) = P{(Ty < o).

n—>o

It follows from (61) and (64) that
1

= .
y=0 7y

(65) P(Ty < ) =1—

We are now in position to show that the birth and death chain is
recurrent if and only if

(66) in=m

If the birth and death chain is recurrent, then P (T, < ) = 1 and (66)
follows from (65). To obtain the converse, we observe that PO, ) =0
for y > 2, and hence

(67) Po(T, < ) = P(0, 0) + P(0, 1)P,(T, < ).

1 Paul G. Hoel, Sidney C. Port, and Charles J. Stone, Introduction to Probability Theory
(Boston: Houghton Mifflin Co., 1971), p. 13.
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Suppose (66) holds. Then by (65)
P(T, < ) =
From this and (67) we conclude that
Py(Ty < ©) = P(0,0) + PO, 1) = 1.

Thus 0 is a recurrent state, and since the chain is assumed to be irreducible,
it must be a recurrent chain.

In summary, we have shown that an irreducible birth and death chain
on {0, 1, 2, ...} is recurrent if and only if

(68) y A _ o,
1 s

Example 13. Consider the birth and death chain on {0, 1, 2,...}
defined by

px=x_+._2_ and qx=*x_, xZO.
2(x + 1) 2(x + 1)

Determine whether this chain is recurrent or transient.

Since

it follows that

g:°""qx . 1-2-
Proei by B4 (x+2)

¥x =

2 1 1
T+ Dx+2 T \x+1 x+2
2 2(~_ y

Thus
0 oo} 1
=2(%—%+— F+i-t+0)
=2-1=1.

We conclude that the chain is transient.

1.8. Branching and queuing chains

In this section we will describe which branching chains are certain of
extinction and which are not. We will also describe which queuing chains
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are transient and which are recurrent. The proofs of these results are
somewhat complicated and will be given in the appendix to this chapter.
These proofs can be skipped with no loss of continuity. It is interesting
to note that the proofs of the results for the branching chain and the
queuing chain are very similar, whereas the results themselves appear
quite dissimilar.

1.8.1. Branching chain. Consider the branching chain introduced
in Example 6. The extinction probability p of the chain is the probability
that the descendants of a given particle eventually become extinct. Clearly

p = p1ro = P(Tp < ).

Suppose there are x particles present initially. Since the numbers of
offspring of these particles in the various generations are chosen inde-
pendently of each other, the probability p., that the descendants of each
of the x particles eventually become extinct is just the xth power of the
probability that the descendants of any one particle eventually become
extinct. In other words,

(69) Pxo = px, x = 1,2, e

Recall from Example 6 that a particle gives rise to & particles in the
next generation, where ¢ is a random variable having density f. If
f(@) = 1, the branching chain is degenerate in that every state is an
absorbing state. Thus we suppose that f(1) < 1. Then state 0 is an
absorbing state. It is left as an exercise for the reader to show that every
state other than O is transient. From this it follows that, with probability
one, the branching chain is either absorbed at 0 or approaches +oc0. We
conclude from (69) that

P(limX,=0)=1—p% x=12....

n—aoo

Clearly it is worthwhile to determine p or at least to determine when
p = 1 and when p < 1. This can be done using arguments based upon
the formula

(70) ®(p) = p,

where @ is the probability generating function of f, defined by

o) = /O + ¥ f)P, 0sis<1
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To verify (70) we observe that (see Exercise 9(b))

P = P10 = P(ls 0) + 21 P(13 y)pyO
y=

P(1, 0) +

s

; P(1, y)p*

@ + 3 SO

= @(p).

Let 1 denote the expected number of offspring of any given particle.
Suppose u < 1. Then the equation @(¢) = ¢ has no roots in [0, 1) (under
our assumption that f(1) < 1), and hence p = 1. Thus ultimate extinction
is certainif u < land f(1) < 1.

Suppose instead that p > 1. Then the equation ®(¢) = ¢ has a unique
root p, in [0, 1), and hence p equals either p, or 1. Actually p always
equals p,. Consequently, if u > 1 the probability of ultimate extinction is
less than one.

The proofs of these results will be given in the appendix. The results
themselves are intuitively very reasonable. If p < 1, then on the average
each particle gives rise to fewer than one new particle, so we would expect
the population to die out eventually. If 4 > 1, then on the average each
particle gives rise to more than one new particle. In this case we would
expect that the population has positive probability of growing rapidly,
indeed geometrically fast, as time goes on. The case u = 1 is borderline;
but since p = 1 when pu < 1, it is plausible by “continuity” that p = 1
also when u = 1.

Example 14. Suppose that every man in a certain society has exactly
three children, which independently have probability one-half of being a
boy and one-half of being a girl. Suppose also that the number of males
in the nth generation forms a branching chain. Find the probability that
the male line of a given man eventually becomes extinct.

The density f of the number of male children of a given man is the
binomial density with parameters » = 3 and p = 1. Thus f(0) = {,
SO =%,f2) =4%,f(3) = %, and f(x) = 0 for x > 4. The mean num-
ber of male offspring is p = 3. Since p > 1, the extinction probability p
is the root of the equation

L3+ P4+ =1
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lying in [0, 1). We can rewrite this equation as

P +32—-5t+1=0,
or equivalently as
¢t—-—DE:2+4—-1=0.

This equation has three roots, namely, 1, — J5 = 2,and /5 — 2. Con-
sequently, p = /5 — 2.

1.8.2. Queuing chain. Consider the queuing chain introduced in
Example 5. Let &;, &,,... and u be as in that example. In this section we
will indicate when the queuing chain is recurrent and when it is transient.

Let u denote the expected number of customers arriving in unit time.
Suppose first that 4 > 1. Since at most one person is served at a time and
on the average more than one new customer enters the queue at a time, it
would appear that as time goes on more and more people will be waiting
for service and that the queue length will approach infinity. This is indeed
the case, so that if u > 1 the queuing chain is transient.

In discussing the case u < 1, we will assume that the chain is irreducible
(see Exercises 37 and 38 for necessary and sufficient conditions for irreduci-
bility and for results when the queuing chain is not irreducible). Suppose
first that © < 1. Then on the average fewer than one new customer will
enter the queue in unit time. Since one customer is served whenever the
queue is nonempty, we would expect that, regardless of the initial length of
the queue, it will become empty at some future time. This is indeed the case
and, in particular, O is a recurrent state. The case u = 1 is borderline,
but again it turns out that O is a recurrent state. Thus if u < 1 and the
queuing chain is irreducible, it is recurrent.

The proof of these results will be given in the appendix.

APPENDIX

1.9. Proof of results for the branching and queuing chains

In this section we will verify the results discussed in Section 1.8. To do
so we need the following.

Theorem 6 Let ® be the probability generating function of a
nonnegative integer-valued random variable & and set p = EE (with
u = +oo if & does not have finite expectation). If u <1 and
P& = 1) < 1, the equation

(71) O(t) =t

has no roots in [0, 1). If u > 1, then (71) has a unique root p, in

[0, 1).
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Graphs of ®(¢), 0 < 7 < 1, in three typical cases corresponding to
u<1l,u=1and g > 1 are shown in Figure 2. The fact that p is the
left-hand derivative of ®(¢) at # = 1 plays a fundamental role in the proof
of Theorem 6.

y y y

y=2() | § !
} y=®(t) 1 :

| | 1

I ! |

| i I

| I |

| | |

I | y=®(t) |

: : ' |

| |

I 1 I 1

1 i 1 t Po 1

w<1 uw=1 w>1
Figure 2

Proof. Let f denote the density of £. Then
O(t) = f(0) + f()t + f(Dt2 + -+

and
() = f(A) + 2f )t + 3fB)? + ---.
Thus ®(0) = f(0), @(1) = 1, and

lim ®'(7) = (1) + 2f(2) + 3f3) + -+ = p.
=1

Suppose first that u < 1. Then
lim ®'(r) < 1.

t=1
Since @’(¢) is nondecreasing in ¢, 0 < ¢ < 1, we conclude that ®'(z) < 1
for 0 <t < 1. Suppose next that u = 1 and f(1) = P =1) < 1.
Then f(n) > 0 for some »n > 2 (otherwise f(0) > 0, which implies that
u < 1, a contradiction). Therefore ®'(¢) is strictly increasing in ¢,
0 <t < 1. Since

lim ®'(t) = 1,

t—1
we again conclude that @'(r) < 1for0 < ¢ < 1.

Suppose now that p < 1 and P(¢( = 1) < 1. We have shown that

®'(r) < 1for0 <t < 1. Thus

%((I)(t)—t)<0, 0<t<],
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and hence ®(¢) — 1 is strictly decreasing on [0, 1]. Since ®(1) — 1 = 0,
we see that ®(z) — ¢ > 0,0 < ¢ < 1, and hence that (71) has no roots on
[0, 1). This proves the first part of the theorem.

Suppose next that x4 > 1. Then

lim @'(7) > 1,

t—1
so by the continuity of @ there is a number #, such that 0 < 7, < 1 and
@'(r) > 1 fort, <t < 1. It follows from the mean value theorem that

o) — Oty)

1 -1,
Since ®(1) = 1, we conclude that ®(zy)) — t, < 0. Now @(¢t) — ¢ is
continuous in ¢ and nonnegative at 1 = 0, so by the intermediate value
theorem it must have a zero p, on [0, #,). Thus (71) has a root p, in
[0, 1). We will complete the proof of the theorem by showing that there is
only one such root.

Suppose that 0 < py, < p; < 1, ®(py) = poy, and ®(p;) = p,. Then
the function ®@(¢) — ¢ vanishes at p,, p,, and 1; hence by Rolle’s theorem
its first derivative has at least two roots in (0, 1). By another application
of Rolle’s theorem its second derivative ®”(¢) has at least one root in (0, 1).
But if 4 > 1, then at least one of the numbers f(2), f(3),... is strictly
positive, and hence

Q"(t) = 2f(2) + 3-2f3)t + - --
has no roots in (0, 1). This contradiction shows that ®(¢) = ¢ has a
unique root in [0, 1). |

1.9.1. Branching chain. Using Theorem 6 we see that the results
for u < 1 follow as indicated in Section 1.8.1.

Suppose ¢ > 1. It follows from Theorem 6 that p equals p, or 1, where
po is the unique root of the equation ®(z) = ¢in [0, 1). We will show that
p always equals p,.

First we observe that since the initial particles act independently in
giving rise to their offspring, the probability P (T, < n) that the de-

scendants of each of the y > 1 particles become extinct by time # is given by
PTy, < n) = (P(Tp < n)y.

Consequently for n > 0 by Exercise 9(a)

P(To<n+1)=PQ1,0 + Y P, y)P(T, < n)
y=1

P(1,0) + Y P(1, y)(P«(To < n))’

y=1

= /@ + T fOXP(T, < ),
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and hence

(72) P(Ty <n+ 1) =0P(T, < n)), n=0.
We will use (72) to prove by induction that

(73) P(To <n) <p,, n=0.

Now

Pi(To < 0) =0 < po,
so that (73) is true for » = 0. Suppose that (73) holds for a given value of
n. Since @(¢) is increasing in ¢, we conclude from (72) that
P(Ty <n+ 1) =0P(To < n)) < Dpo) = pos

and thus (73) holds for the next value of n. By induction (73) is true for
alln > 0.
By letting » — oo in (73) we see that
p = Pi(T, < ) = lim P(T, < n) < p,.

n— o0

Since p is one of the two numbers p, or 1, it must be the number p,.

1.9.2. Queuing chain. We will now verify the results of Section
1.8.2. Let &, denote the number of customers arriving during the nth time
period. Then &, &,, . .. are independent random variables having common

density f, mean pu, and probability generating function ®.

It follows from Exercise 9(b) and the identity P(0, z) = P(l, z), valid
for a queuing chain, that pgq = p;o. We will show that the number
P = poo = Pio satisfies the equation

(74) @(p) = p.

If 0 is a recurrent state, p = 1 and (74) follows immediately from the fact
that ®(1) = 1. To verify (74) in general, we observe first that by Exercise

9(b)

oo = PO.0) + T PO Yoo
i.e., that
(75) b = 1O + i F3oser

In order to compute p,o, y = 1, 2, ..., we consider a queuing chain start-
ing at the positive integer y. For n =1, 2,..., the event {T,_, = n}
occurs if and only if

n=minm>0y+ ¢ -D++¢, —D=y—-1)
=min(m>0:¢ +- -+ &, =m— 1),
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that is, if and only if # is the smallest positive integer m such that the
number of new customers entering the queue by time m is one less than
the number served by time m. Thus P(T,_; = n) is independent of y,
and consequently p,,_; = P(T,_; < o) is independent of y for
y=1,2,.... Since p;, = p, we see that

Pyy-1 = Py-1y-2 = *°° = P10 = P-
Now the queuing chain can go at most one step to the left at a time, so in
order to go from state y > 0 to state 0 it must pass through all the inter-
vening states y — 1,..., 1. By applying the Markov property we can
conclude (see Exercise 39) that

(76) Pyo = Pyy—1Py-1,y-2"""P10 = P’-
It follows from (75) and (76) that

p =10+ T 1) = 20p),

so that (74) holds.

Using (74) and Theorem 6 it is easy to see thatif ¢ < 1 and the queuing
chain is irreducible, then the chain is recurrent. For p satisfies (74) and by
Theorem 6 this equation has no roots in [0, 1) (observe that P(¢; = 1) < 1
if the queuing chain is irreducible). We conclude that p = 1. Since
Poo = p, state O is recurrent, and thus since the chain is irreducible, all
states are recurrent.

Suppose now that p > 1. Again p satisfies (74) which, by Theorem 6,
has a unique root p, in [0, 1). Thus p equals either p, or 1. We will prove
that p = p,.

To this end we first observe that by Exercise 9(a)

P(To, <n+1)=P1,0) + Y P({, y)P(T, < n),
y=1
which can be rewritten as

N Py <n+ 1) =fO+ ¥ FOP(T < n)

We claim next that
(78) P(T; < n) = (PTp < W)Y, y=>1and n > 0.

To verify (78) observe that if a queuing chain starting at y reaches 0 in n
or fewer steps, it must reach y — 1 in n or fewer steps, go from y — 1 to
y — 2 in n or fewer steps, etc. By applying the Markov property we can
conclude (see Exercise 39) that

(719  P(To <n) < P(T,—y < m)Py,_((T,—, < n): - P(Tp < n).
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Since

(78) is valid.

It follows from (77) and (78) that

PTo<n+ D) <10+ 3 fOXP(To < Y,

i.e., that

(80) P(Ty<n+1) <®P,(Ty, <n), n=0.

This in turn implies that

(81) Py(To < n) < po, n>0,

by a proof that is almost identical to the proof that (72) implies (73) (the
slight changes needed are left as an exercise for the reader). Just as in the
proof of the corresponding result for the branching chain, we see by letting
n — oo in (81) that p < p, and hence that p = p,.

We have shown that if g > 1, then pyo = p < 1, and hence 0 is a

transient state. It follows that if x > 1 and the chain is irreducible, then
all states are transient. If u > 1 and the queuing chain is not irreducible,
then case (d) of Exercise 38 holds (why?), and it is left to the reader to
show that again all states are transient.

Exercises

1 Let X, n > 0, be the two-state Markov chain. Find

(a PX; =0| X, =0and X, = 0),
(b) P(X; # Xp).

Suppose we have two boxes and 24 balls, of which d are black and &
are red. Initially, d of the balls are placed in box 1, and the remainder
of the balls are placed in box 2. At each trial a ball is chosen at random
from each of the boxes, and the two balls are put back in the opposite
boxes. Let X, denote the number of black balls initially in box 1 and,
for n > 1, let X, denote the number of black balls in box 1 after

the nth trial. Find the transition function of the Markov chain X,
n>=0.

Let the queuing chain be modified by supposing that if there are one or
more customers waiting to be served at the start of a period, there is
probability p that one customer will be served during that period and
probability 1 — p that no customers will be served during that period.
Find the transition function for this modified queuing chain.
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Consider a probability space (Q, &/, P) and assume that the various

sets mentioned below are all in &7.

(a) Show that if D; are disjoint and P(C | D;) = p independently of i,
then P(C | J; D) = p.

(b) Show that if C; are disjoint, then P({J; C; | D) = ¥; P(C; | D).

(c) Show that if E; are disjoint and |J; E; = Q, then

P(C| D) = ¥, P(E; | D)P(C | E; A D).

(d) Show that if C; are disjoint and P(4 | C;) = P(B| C;) for all i,
then P(4 | U,Cy) = P(B| U:C)).

Let X,, n > 0, be the two-state Markov chain.

(a) Find Py(T, = n).
(b) Find Py(T; = n).

Let X,, » > 0, be the Ehrenfest chain and suppose that X, has a

binomial distribution with parameters  and 1/2, i.e.,

Il

(5
X
P(X0=x)=7, x=0,...,d.
Find the distribution of X.
Let X,, n > 0, be a Markov chain. Show that

PXy = % | Xy = %p5:0:5 X, = %)= Py = % | Xy = xy).

Let x and y be distinct states of a Markov chain having d < oo states
and suppose that x leads to y. Let n, be the smallest positive integer
such that P™(x, y) > 0 and let x,, ..., x,,_ be states such that

P(x5 xl)P(xl, xz) e P(xno—Za xno—l)P(xno—l’ y) > 0

(a) Show that x, x4,. .., X, _1, y are distinct states.
(b) Use (a) to show thatny < d — 1.
(c) Conclude that P(T, <d — 1) > 0.

Use (29) to verify the following identities:
(@) P(T, < n + 1) = P(x,y) + Y, P(x, 2)P(T, < n), n
z#y

v
=

(b) poy, = P(x, ) + ; P, 2055
z#y

Consider the Ehrenfest chain with d = 3.

(a) Find P(T, = n)forxe and 1 <n < 3.

(b) Find P, P2, and P3.

(c) Let =y be the uniform distribution ny = (4, 4, 4, 3). Find =, =,,
and =;.
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11 Consider the genetics chain from Example 7 with d = 3.
(2) Find the transition matrices P and P2.
(b) If =y, = (0, 3, %, 0), find =, and =,.
(©) Find P(Tp,5y = n),xe &, forn =1landn = 2.

12 Consider the Markov chain having state space {0, 1, 2} and transition

matrix
0 1 2
0 0 1 0
P=1|1-p 0 p|.
2 0 1 0
(2) Find P2

(b) Show that P* = P2,
(¢) Find P",n > 1.

13 Let X,, n > 0, be a Markov chain whose state space & is a subset of
{0, 1, 2,...} and whose transition function P is such that

Y yP(x,y) = Ax + B, xe,

¥y

for some constants 4 and B.
(a) Show that EX, ., = AEX, + B.
(b) Show that if 4 # 1, then

EX, = & +A"(EX0——1L).
1-4 1 —

14 Let X,, n > 0, be the Ehrenfest chain on {0, 1, ..., d}. Show that the

assumption of Exercise 13 holds and use that exercise to compute
E(X,).

15 Let y be a transient state. Use (36) to show that for all x
o0 0
Y Py < X Py ).

16 Show that p,, > 0if and only if P"(x, y) > 0 for some positive integer
n.

17 Show that if x leads to y and y leads to z, then x leads to z.

18 Consider a Markov chain on the nonnegative integers such that,
starting from x, the chain goes to state x + 1 with probability p,
0 < p < 1, and goes to state 0 with probability 1 — p.
(a) Show that this chain is irreducible.
(b) Find Po(Ty = n), n > 1.
(c) Show that the chain is recurrent.
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Consider a Markov chain having state space {0, 1,..., 6} and
transition matrix
01 2 3 456
02 04 4 %0 0]
110 01 0 0 O0 O
210 0 01 000
3101000 00O
410000 % 0 %
510 00 0 % 1 O
6100 0O0O0 1 %]

(a) Determine which states are transient and which states are recurrent.
(b) Find py,, y = 0,..., 6.

Consider the Markov chain on {0, 1, ..., 5} having transition matrix

01 2 3 45
o< £ 0000
11+ %2 0000
2100 3£ 0 Z O
31% %00 % %
4100 2 0% O
500 + 0 5 % 3

(a) Determine which states are transient and which are recurrent.
(b) Find pyo,13(x), x = 0,..., 5.

Consider a Markov chain on {0, 1, ..., d} satisfying (51) and having
no absorbing states other than O and 4. Show that the states 1, ...,
d — 1 each lead to 0, and hence that each is a transient state.

Show that the genetics chain introduced in Example 7 satisfies
Equation (51).

A certain Markov chain that arises in genetics has states O, 1,..., 2d
and transition function

e = () G (-2

Find p;(x), 0 < x < 2d.
Consider a gambler’s ruin chain on {0, 1, ..., d}. Find
P (T, < Ty, 0<x<d

A gambler playing roulette makes a series of one dollar bets. He has

respective probabilities 9/19 and 10/19 of winning and losing each bet.

The gambler decides to quit playing as soon as he either is one dollar

ahead or has lost his initial capital of $1000.

(a) Find the probability that when he quits playing he will have lost
$1000.

(b) Find his expected loss.
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26 Consider a birth and death chain on the nonnegative integers such that

py > 0and g, > Ofor x > 1.

(a) Show thatif 372, 7, = oo, thenp,o = 1, x > L.
(b) Show thatif 372, y, < oo, then

©
y=x ‘yy

) x = 1.
Zy=0 yy

Pxo =

27 Consider a gambler’s ruin chain on {0, 1, 2,...}.

(a) Show thatif ¢ > p, then p,o = 1, x > 1.
(b) Show that if g < p, then p, = (g/p)", x = 1.
Hint: Use Exercise 26.

28 Consider an irreducible birth and death chain on the nonnegative

integers. Show that if p, < g, for x > 1, the chain is recurrent.

29 Consider an irreducible birth and death chain on the nonnegative

integers such that

v
P

- (2
Dy x4+ 1)’
(a) Show that this chain is transient.
(b) Find p.o, x = 1. Hint: Use Exercise 26 and the formula

T 1y? = 726,

30 Consider the birth and death chain in Example 13.

(a) Compute P(T, < T;) fora < x < b.
(b) Compute p.o, x > 0.

31 Consider a branching chain such that f(1) < 1. Show that every

state other than 0 is transient.

32 Consider the branching chain described in Example 14. If a given

man has two boys and one girl, what is the probability that his male
line will continue forever?

33 Consider a branching chain with f(0) = f(3) = 1/2. Find the

probability p of extinction.

34 Consider a branching chain with f(x) = p(1 — p)*, x > 0, where

0 < p < 1. Show that p = 1 if p > 1/2 and that p = p/(1 — p) if
p < 1/2.

35 Let X,, » > 0, be a branching chain. Show that E.(X,) = xu".

Hint: See Exercise 13.

36 Let X,, n > 0, be a branching chain and suppose that the associated

random variable ¢ has finite variance o2
(a) Show that
E[X2 ]| X, = x] = xo* + x*p?.
(b) Use Exercise 35 to show that
Ex(Xn2+1) = x#no_Z oy iqux(Xt?)
Hint: Use the formula EY = Y, P(X = x)E[Y | X = x].



