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FIGURE 3.29 IIlustrative positioning of random lattice.

or

E[N(T)] = t (3.76)

as we might have expected intuitively. This is a result that generalizes readily
to two and more dimensions (see [KEND 63, pp. 102-104]).

If t = p + q, where p is integral and O ::s;: q < I, the variance is

0''f.J(T) = q(1 - q) (3.77)

How did we obtain this result?

Hint: Recognize (3.77) as the variance of a Bernoulli random variable.

Question: Can you compare the mean coverage of the random position
model (Example 10) to the mean coverage of the lattice-position mo dei
(Example lI)?

Further work: Problem 3.24.

The coverage examples discussed above are illustrative of the types of
problems that can be tackled using coverage concepts. However, apparently
simple variations in coverage model assumptions seem to yield an intractable
model much more readily than do models employing more conventional
(non-area-based) random variables.

3.7 EXPECTEO TRAVEL OISTANCES ANO TIMES:
SOME PRACTICAL RESULTS

Much of the material so far in this chapter has direct applications to the
important problem of estimating the expected value of the distance covered
(or traveI time needed) by urban response units in traveling to the location
of requests for assistance. In this section we will discuss this problem further
and develop some simple approximate 1~":lm which are often very useful in
practical applications.

3.7.1 Simple Model

Example 12: Design of a Response Dlstrict

Suppose that w~ have once more the situation described in Exercise 3.1, where
requests for assistance are medical emergencies and the urban response unit is
an ambulette. Under the assumptions that (1) locations of a medical erner-
g~nc~ (XI, YI) and of the ambulette (X2, Y2) are independent and uniformly
distribute jl over the response district, and (2) travei is parallel to the sides of
the rectangular response area, the lavei distance [from (3.11)] is given by

From Exercise 3.1, we then have that

E[D] = -![Xo + Yo] (3.12a)

wher~ Xo and Yo are the sides ofthe rectangle (see Figure 3.3). In this example
~e wish to formulate and solve the roblem of o ti aLdisttict esi and to .• ,l
investigate the ~nsitivity of our results to suboptimal designs, S li I' ~_·
Solution ~

T.o find the district dimensions which lead to the minimum expected travei
distance, we must keep the area of the response district A o = X Y constant
and minimize (3.12a) subject to the condition Yo = Ao/Xo. Without this
constant, a.zer? area (point) district would be optimal, an obviously infeasible
result c?nsl~eflng t.hat the collection of districts in a city rnust usually cover
th~ ~n!lre city (which has fixed positive area). Not surprisingly, (3.12a) is
minimized when the rectangle becomes a square,

Xo = Yo = "J A o (3.78)
In that case we have

E[D] = -j"J A o (3.79)

. . generall)','f the etfective travei speeds.í the x-directíon and he
-dlreGtl0 ,'U", and 1Jy, are independent of-travel distance, he e pe ted travei

E[T] = ~(Xo + Yo)
3 Vx vy

is minimized when

(3.80)

in which case

(3.81)

)
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The three district geomçtries included in Table 3-1 are "special cases" of
rectangular, diamond-shaped, and elliptic districts. lf one varies the district
dimensions of each type while constraining district area to equal a constant
Ao, E[D] is minimized by lhe symmetric geometries represented in Table 3-l.

It can be seen from Table 3-1 that, for any given district area Ao, E[D] is
very insensitive to the exact geometry of the district. This can be confirmed
by deriving E[D] for other possible district geometries, such as equilateral
triangles or piece-of-pie-like sectors of circles. Moreover, for any given dis-
trict geometry, the value of E[D] is insensitive to changes ofthe dimensions of
the district that might make it appear to deviate appreciably from its optimum
shape. This, too, can be confirmed by performing a sensitivity analysis similar
to the one for the rectangular district in Example 12.

From these observations it can be concluded that we can use the first
three columns of Table 3-1 to infer similar approximate expressions for
E[D] that apply to districts of any shape as long as (I) one of the dimensions
(e.g., "length") is not much greater than the other dimension (e.g., width),
and (2) major barriers or boundary indentations do not exist in the district.
Districts that satisfy both of the conditions above will be called here, infor-
mally, "fairly compact and fairly convex districts." We can now state the
following:

For fairly compact and fairly convex districts and for independently and
spatially uniformly distributed requests for service,

E[D]"':"" c·,JAo (3.84)

where Ao is the area ofthe district and c is a constant that depends only on
the metric in use and on the assumption regarding the location of the
response unit in the district.

The last column of Table 3-1 lists values that can be used for c in (3.84)
for the four combinations of response unit locations and metrics that we have
examined here. ln all cases, we have selected the largest value of c listed in
each row of the three leftmost columns of Table 3-l.

When the effective travei speed is independent of the distance covered,
one can use the constants in the fourth column of Table 3-1 to approximate
the expected travei time, E[T], as well. ln that case we have

E[T] . ~ /:;4v,y o (3.85)

in the case of EucIidean travei (assuming that the effective travei speed v is
independent of the direction of travei) and

(3.86)
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for right-angle traveI. ln this latter case, the district "cornpactness" statement
.'.. requires that

That is, it takes on lhe average about as much time to traverse the district '
from east' to west as from north to south.

Another observation that cari be made on the basis of the foregoing dis-
cussion is that both E[D] and E(T] are proportional to the square root of the
district area, Ao, irrespective of the specific distance metric in use. This is
hardly surprising since this relationship is basically a dimensional one: dis-
tance is the square root of area. More formalIy, if the coordinates of each
point (x, y) in the district of interest are multiplicd by ,Jm (m > 1) [i.e.,
point (x, y) now becomes point (,Jm x',Jm y)], then the area ofthe district
increases m-fold but the length, L, of any given route between the pair of
points (XI' YI) and (x2, h)-in the original district-becomes equal to,J m L
in the expanded district.

Equivalently, we ean state that E(D] and E[T] must be proportional to the
inverse of the square root of the density of response units in a district, for
districts with more than one response unit. at is, if a district of area A is
divided into n approximately equal fairly con and fairly compact sub-
districts of responsibility (whose shapes may vary), t en

E[D]"':""c /Ao=+..
. '\j N ...; Y4.. (3.87)

where y denotes the spatial density of service units. We shall derive the same
functional type of relationship in a sornewhat different context later in this
chapter [cf. (3.101a) and (3.104a)].

3.7.2 More Realistic Travei-Time Model

ln most practical situations, the effective travel speed of urban response
units depends on travei distance: longer trips, in general, are taken at a "
higher average speed than are shorter trips. It is therefore desirable to ,
develop expressions for E[T] that take into consideration some types of
functionaI relationships between travei time and travei distance [unlike
expressions (3.81) and J (3.86), which assumed that effective traveI speed
remains constant with distance].

One pIausible model is the following. Let us assume that urban service I

vehicIes responding to a call, first go through an acceleration stage (perhaps
while maneuvering their way through side streets, turns, etc.) until they reach
a cruisin8.2 eed that they maintain through the middle stage of the trip
(while, perhaps, traveling on highways, thoroughfares, ete.) up to the final

\ \ ) \) ) ) ) J' I )
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stage of it, during which they decelerate to a stop. Let us fur er assume that
during the initial and final stages, vehicles accelerate (or decelerate) at a con-
stant rate of a miles/min- and that during the middle stage, travei is at a
constant cruising speed of ve miles/rnin.

For trips of length less than Ld, (where de = v;/2a is the distance needed
to reach cruising speed) the cruising s eed will neve be reached; this is not
the case when the travei distance D is greater than 2de• Using the weU-known
physica relationships for accelerated and constant speed travei (D = at2/2
and D = vt), it is then easy to conclude that the conditional expected travei
time E[TI D = d) for any given traveI distance is

From (3.88) and (3.89) we then have (in minutes)

E[TI D = d] = {23
/
2.../d

2d+ 1
for d ~ 0.5 mile
for d » 0.5 mile

From the faet that D" and Dy, the distanees traveled in the east-west and
norjh-south direetions, respectively, are independent random variables dis-
tributed uniformly between t.l and 1- mile, it is easy to show, using the tech-
niques of this chapter (see Problem 3.9), that for D = D" + Dy we have

E[TID = d) = 2,):
E[TI D = d) = d - 2de + 2ve = !!... + Ve

Ve a Ve a

for d < 2de (3.88)
{
4X

fD(X) = 4(1 - x)
for O ~ x ~ 1-
fori ~ x ~ I

(3.91)

for d > 2de (3.89)
Substituting for E[TI D = x] andfD(x) in (3.90), we then obtain

One can obviously think of many other physical scenarios that would lead to
different expressions for E[TI D = d). A considerable amount of field data,
however, suggests that (3.88) and (3.89) often provide truly exceIlent approxi-
mations for many urban services-see, for instance, [KOLE 75, JARV 75,
HAUS 75].

An expression for the unconditional expected travei time, E[T], can now
be written:

fl/2 JI
E[T] = 23/2 .../X -Ax-dx + (2x -I- 1)4(1 - x) dx = 1.97 minutes

o 1/2

for the average traveI time in responding to a fire alarm in this distriet.

E[T] = (~E[TI D = X]fD(X) dx = (2d, 2,) X fD(X) dxJo Jo a

+ J~(Ve + ~) fD(X) dx
2d, a Ve

Unfortunately, the pdf for the traveI distance fD(X) is often difficult to
obtain, either theoreticaIly or from field data. The foIlowing approximate
expression for E[TI D = d) is then often used in order to overcome this
problem:

E[TID = d] = !!... + Ve

Ve a for d > O (3.92)

(3.90)
This expression is compared with (3.88) and (3.89) in Figure 3.30. Note that
(3.92) is a "conservative" model for E[TI D = d] in the sense that it provides
an upper bound for (3.88) and (3.89) and is ais o a good approximation to it
for ali values of D, when Zd, is relatively smaIl by comparison to the distances
that a response unit usuaUy travels. The physical interpretation of (3.92) is
also simpIe: a fixed amount of time (= vela) is spent getting ready for each
trip and then the trip takes place at a eonstant travei speed,? Ve•

Obviously, the advantage of (3.92) is that fD(X) is no longer necessary to
develop a simple expression for the unconditional travei time E[T]. For we
now have

In order to evaluate the two integraIs in (3.90) it is necessary to know the pdf
for the travei distance, fD(X),

Example 13: Expected Travei Time in a Square District

Consider a 1- by l-rnile-square fire district with a firehouse located at its
center. Fire alarms are distributed independently and uniformly within the
distriet and the traveI metric is right-angle with directions of traveI parallel to
the sides of the square. Measurements have shown that the "cruising speed"
for fire engines is v" = Vy = Ve = 30 miles/hr and vehicle acceleration and
deceleration (as described above) is a = 0.5 miles/rnin>; that is, it takes, on
the average, about 1 rninute of traveI for the fire engines to accelerate IIp to
(ar decelerate down frorn) cruising speed. (These values are rather typical, as
field data show-see below.) It follows that de = v;j2a = 0.25 mile.

9It is also possible to have this effectivetraveI speed depend on the direction of traveI
(e.g., as in lhe case of right-angle travei).
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Time, ElTiD = dI

- Model (3.88)-(3.89)
___ Model (3.92)

-a

o 2dc Distance, d

FIGU RE 3.30 Comparison of two models of the expected travei time versus
travei distance relationship.

and so

(3.93)E[T] = E[D] + Ve

Ve a

Example 13: (continued)

For our 1- by l-mile-square-district example, it is obvious by inspection that
E[D] = 0.5 mile (cf. Table 3-1). It follows that, with Ve = 0.5 mile/rnin and
a = 0.5 mile/rnin-, E[T] = 2 minutes, or only about 2 seconds more than our
earlier exact estimate! The very dose agreernent between the two estimates
may seem surprising in view of the fact that Zd; = 0.5 mile in this case, or 50
percent of the full range of values of the traveI distance D~ ~ 1 .r

The example above is not atypical. Estirnates of E[T] obtained through
(3.92) and (3.93) are usual1y very elo e tà estimates obtained through the
time-consuming approach summarized by (3.88)-(3.90) for the values of Va

and a one encounters in urban service applications.
Table 3-2 Iists four sets of measured values of ve and a for four different

cities in the United States. The data were collected by the fire departments in
these cities [HAUS 75). WI!1iO:::tiu=si:m:í:Itlf.iilJ.::~::tb1~attl:es::~:dI:l~:xuisilfgJ
4IlP!;u:u:~From Table 3-2 it can also be inferred that the constant vela typically
adds about 0.5 to 1.0 minute to E[T] in (3.93).

In this section we have thus conc1uded that:

I ,

I
t
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TABLE 3-2 Cruising speeds and acceleraticns.!
,'<:::p ,.,,;"H-.

".
Ve (miles/hr) ~ a (miles/min2)

c.
New York, N.Y. 39.1 0.48
Trenton, N.J. 34.8 1.09
Yonkers, N.Y. 33.9 ., 0.86
Denver, Colo. 39.2 1.05

'Values of the cruising speed, "c, and acceleration, a for
four fíre departmcnts in the Unitcd States [HAUS 75].

u
The travel tirne/travel distance relationship (3.92) greatly simplifies the
calculation of E[T) and provides excellent approximations to results pro-
duced through more complicated analyses.

~Cl

It should be noted that our earlier results regarding variation of E[l1
with district geometries apply unaltered in the context of (3.93). This is
because of the continued linear relationship between D and T, which is
augmented in (3.93) only by an additive constant, a term that does not affect
variational analyses of district geometries. Even when cruising travei speed
depends on direction of travel, i.e., when v x * Vy, the addition of a constant
to the travei time will not affect the variations of traveI times with district
designs. Most important, optimal designs remain unchanged.

3.7.3 Expected Travei Distances:
The General Case

Our discussion, so far, has focused primarily on exact and' approximate
expressions for expected travel distances and times to and from incidents in
districts with relatively regular ("fairly compact and fairly convex") georne-
tries and uniform distribution of incidents over the districts. Although this
focus may appear, at first, t~ cover only a limited subset ofthe cases that one
may encounter, it , urns out )that,. in practice, our results can be used as
"building blocks" to obtain good approxirnations in a large number of cases
where incidents are not uniformly distributed and the district itself does 110t
have a nice rectangular (or circular, triangular, etc.) shape.

Before illustrating this, let us first discuss, in the abstract, the most general
possible cases. Let (X, Y) and (XI' YI) indicate, respectively, the location of
calls for service and ofthe response unit in a district R ofarea A. Denote by
!x,y,X"y,(x, y, XI' YI) the joint pdf for random variables X, Y, XI' and YI,
and by D = d[(XI, YI), (X, Y)] the mathematical relationship for the dis-
tance between (XI' YI) and (X, Y) (e.g., D = ,J(XI - X)2 + (YI - y)2 for
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Euclidean distances]. Then, for the expected travei distance in the district, we
have

E[D] = f ff f d[(xl, YI)' (x, Y)]fx,y,x"y,(x, Y, X I' YI) dx I dYI dx dy (3.94)
over R

Note that the joint pdf for the coordinates of the incident and of the service
unit can be made to reflect not only nonuniformities in the distribution over
R but also possible dependencies between the locations of incidents and of
the service unit.

Expression (3.94) can be extended to the case where N response units are
located in district R. Now let (XI' YI) indicate the location of the ith response
unit (i = 1,2, ... , N) and (X, Y) the location of an incident. Then the dis-
tance between the incident and the clos~ response unit can be written

Since DN is then a function of the random variables X, Y, XI' YI, X2,

... , XN, YN, we can write

E[DN] = f ... f Min (d[(xl, YI)' (x, y»), ... , d[(xN, YN)' (x, y)]} •
over R

wherefx,y,x"y' .... ,XN,yJX' Y, x I' ... , YN) is obviously the joint pdf for the coor-
dinates ofthe incident and the N response units. Thus, in both (3.94)and (3,95)
we have expressed expected travei distance as the expected value of a function
of random variables whose joint pdf is known. The problem of computing
the expected traveI distance in the general case is, therefore, no more (or less)
difficult than working with any other function of these random variables (cf.
Section 3.1).10

Obviously, in practice, there are severe limitations on how far one can go,
in deriving such exact expressions for E[D]. Problems become mathematically
intractable as the number of random variables increases or as the shape of R
and/or the joint pdf for the random var iables becomes more complex. In
many cases, however, ali is not Iostas .!Qng as one is willing to settle for good
approximations rather tharr exact results. This is true any time the response
unitsare stationary at known. locations, no matter what the number, N, of
these units is (and for practically any pdf for the spatial distribution of
incidentsjdemands as well as for any shape of the district of interest). lt is
also true, for any value of N, in the case of mobile response units as long as

I0This approach can also be generalized to expected distances to other than the closest
uni! (e.g., to the kth closest unit).

,"
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subdistricts of responsibility have been defined in such a way that each sub-
district of R is served exclusively by a very small numbcr of mobile units
(preferably 1I). In such instances, the following three-step approach will
always work:

Divide the district R into several (possibly many) nonoverlapping
Iparts, which we shall call "zones." Each zone must have the fel-
lowing two properties!

a. Its shape must be approximately rectangular, triangular,
circular, or any other easy-to-work-with configuration.

b. The pdf for the spatial distribution of incidentsjdemands
within each zone must be approximately uniform (or that pdf
can be approximated by some other sufficiently simple expres-
sion as to permit easy mathematical rnanipulation).

Using the techniques of this chapter, compute ali intrazone and
zone-to-response unit expected distances, as required by the prob-
lem at hand.

STEP 3: Multiply the expected distances computed in Step 2 by appro-
priate probabilities to obtain overall expected travei distances for
district R.

Note that each zone in Step I can have an individual shape with its "own"
pdf for the distribution of incidents. Note also that the greater the degree of
accuracy desired, the larger the number of district zoncs should be (to
approximate better the shape of the district R a nd the pdf for the spatial dis-
tribution of incidents). 1n fact, the three-step approach outlined above is very
similar to the approach that a computer would follow in order to compute
numerically the integrals in expressions (3.94) and (3.95).

Rather than attempt a more formal statement of the above three-step
approach, we now ilIustrate it through the following example.

Example 14: Commuter Travei ;11 a Suburban TowII

Consider the suburban town shown in Figure 3.31. Its only aeeess to the
central business district (CBO) of the metropolitan area of which this town
is a part is through the single bridge shown in Figure 3.31. The CBO is 6 miles
from the bridge's end, as shown. Travel in lhe town is right-angle, as shown.

We are interested here in the total nurnber of person-rniles traveled by the
town's working residcnts (not including schoolchildrcn) each morning on
their way to work. (This inforrnation might be useful in transportation plan-
ning or in estimating transportation-related fuel consumption by cornmuters.)
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FIGURE 3.31 Conliguration 01 a suburban city.

About 80 pereent of the working residents work in the central city at the
CBD. The other 20 percent work in town (and do not have to cross the bridge
every morning). Trips are generated uniforrnly over the town at the rate of
about 2,000 trips per square mile. The only exceptiori is the rectangular area
to the east of the 2.5-mile mark along the river (as shown in Figure 3.31),
where the density of trips generated per square mile decreases linearly accord-
ing to the function g(d) = 4,000(3 - d), where d is the east-west coordinate
(2.5 ~ d < 3) of each point as measured from the southwesternmost point of
the town (see Figure 3.31). There is no difference between the spatial distribu-
tions of trip origins to the CBD and to in-town jobs. That is, of every 100
trips generated at each part of the town, no matter where that part is located,
80, on the average, are to the CBD and 20 to in-town jobs.

The spatial distribution (and density per square mile) of in-town jobs is
assumed identical to the distribution (and density) of trip-generating points
for in-town jobs. (This may be the case, at least approximately, when there
are no concentrations of places of employment in a city and when no major
employers, such as factories, etc., are located there.) For the purposes of this
example, we shall also make lhe more questionable assumption that the job
and residence locations for in-town workers are statistically independent

Sec.3.7 145Expected TraveI Distances and Times

(i.e., that knowledge of where an in-town worker's home is does not affect our
a priori knowledge ofwhere in town he or she works, and vice versa).

Solution

In working on this problem, we shall first compute the expected travei distance
for CBD workers, then the expected travei distance for in-town workers, and
fin.zlly the total passenger miles covered per day.

To start with, we need a ..oordínate system. Although our choice of origin
does not really make much difference in this case, the edge of the bridge on
the town's side is a particularly convenient one. We thus relabel the various
points of interest according to this choice of origin, as shown in Figure 3.32a.
We can also, using the information given, construct the pdf for the spatial
distribution of trip-generation points.

Exercise 3.9 Show that this pdf is given by

l

-!r
fx,,(x, y) ~ ~ (2 - x)

for -1 ~ x ~ O, O s; y ~ 2.5
for O ~ x ~ 1.5, O ~ y ~ 1.5
for 1.5 ~ x ~ 2, O ~ y ~ 1.5
otherwise

Note thatfx.y(x, y) also represents the pdf for the spatial distribution of in-
town jobs according to the problem statement.

With these preliminaries we can now compute:

1. E[D1 for CBO workers. Since the coordinates of the edge of the
bridge that travelers to the CBD must reuch are (O, O), the distance
from any point with coordinates (X, Y) to. the bridge is given by
D = IXI -I- I YI·

Exercise 3.10 Show that if we define Z = IX I and W = I Y I, then fz(z) and
.hv(w) are as shown in Figure 3.32b and c. Note that both pdf's ean be derived
almost by inspection by first obtaining !r(x) and fy(y) from fx,r(x, y). In
doing so we use the geometrical probability interprelation of pdf's (cf. Section
3.4.1).

It is now easy to obtain

E[D1 = E[lXIl -I- E[I YIl = E[Z1 -I- E[W1 = )9:4 + :~~~ 1.60

miles for the expected distance to point (O,O).

2. E[D1 for in-town workcrs. We now partition the town into four non-
ovcrlapping zoncs, as shown in Figure 3.32d. Wc wish, in cffcct, to
compute E[D1 between two random points in the town with the loca-
tions of each point determined independently, each according to the
pdfj:r.y(x, y). To do this we consider ali possible intrazone and inter-
zone expected distances and then multiply each expected distance by
the appropriate probability.
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FIGU RE 3.32 (a) Coordinates of corner points of suburban city; (b) The pdf for
Z; (c) The pdf for W; (d) partitioninq of lhe suburban citv,
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For instance, it can be seen that, given an in-town worker:

P(both residence and place of work are in zone I}= (:1r = 1,~~I
E[D I both residence and place of work are in zone I] = t mile

Exercise 3.11 Show that if both the residence and the place of work of an
in-town worker are in zone IV, his or her conditional expected traveI dis-
tance is equal to Hmile. )

Exercise 3.12 By carefully considering ali residence and place-of-work com-
binations, show that for in-town workers, E[D] ~ 1.655 miles.

3. Total expected distance. A total of about 10,250 trips take place
every morning. Of those 80 percent (= 8,200) are to the CBD and
20 percent (= 2,050) are in-town, The expected travei distance to a
CBD trip is 7.60 miles [remember that point (O, O) is 6 miles from the
CBD] while an in-town trip is 1.655 miles long on the average. There-
fore, the total expected distance traveled by workers each morning
is 65,755 person-miles.

It should be c1ear that the problem of determining E[D] for CBD workers
was equivalent to computing E[D] between an incident distributed as
fx,y(x, y) in the city and a fixed service unit located at the CBD. Similarly,
E[D] for in-town workers is equivalent to the expected travei distance between
an incident spatially distributed as fx,y(x, y) in the town and a mobile
response unit with that same distribution for its location in the town.

Finally, we might, out of curiosity, wish to compare the result of Exercise
3.12 for the expected travei distance for in-town workers with the result that
we would have obtained had we used the approximate expression (3.84) with
c = 0.67 (Table 3-1), disregarding the fact that the shape of the town of
interest is not quite "fairly compact and fairly convex" and that in a part of
the town the distributions of demand and of the "service unit" (i.e., of the job
locations) are not uniform. Since the area of the town is 5.5 square miles, we
have E[D] "'" 0.67-v15.5 "'" 1.57 miles, for an error of about 5 percent! The
reader who worked through Exercises 3.10-3.12 to obtain the exact result
of 1.655 wil\ definitely appreciate now the value of approximate expression
(3.84).

3.8 SPATIAL POISSON PROCESSES

3.8.1 Description and Postulates

Suppose that we have entities distributed around the city in a completely
random manner. These entities could be employees of a particular service
system, recipients of a certain social service, emergency response units, crimes,
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and so on. We require a way of describing probabilistically the numbers of
entities in given subareas and spatial interrelationships among entities. To do
this, we generalize the idea of a Poisson process in time to a Poisson process
in space.

We recall from Chapter 2 that for a homogeneous Poisson process in
time, the probability that exactly k Poisson events occur in a fixed time
interval [O, t] is

P(X(t) = k} = O./rru
for 1 > 0, k = 0, 1,2, ...

where À is a positive constant interpreted as the average rate at which events
are happening per unit time. The process is called "homogeneous," because
1does not vary with time.

Applying the same ideas in a spatial setting, first consider a homogeneous
highway segment of length I miles. From past accident records we may know
that each year an average of À. highway accidents occur per mile on this type
of highway. Then the number of highway accidents that occur in the segment
of length I miles can be modeled as a Poisson random variable with mean 1/.
Here the para meter distance (/) plays a role directly analogous to time (I).
For the Poisson model to be a reasonable one, the locations of accidents
must occur consistent with Poisson-type assumptions: (1) only nonnegative
integer numbers of accidents can occur in any length of highway; (2) the
probability distribution of the number of accidents depends only on the
length ofhighway considered, and as this length goes to zero so does the prob-
ability of an accident occurring there; (3) the numbers of accidents occurring
in nonoverlapping segments of highway are mutually independent random
variables; and (4) given that an accident occurs at a particular location, the
chance of a second accident occurring at the identically same location is
zero. Assumptions (1) and (3) appear fairly reasonable for most highways.
Since different parts of a highway (e.g., curves versus straight-aways) can be
associated with different risks of accident, the first part of assumption (2)
may have to be modified in practice to allow for a spatially varying (non-
homogeneous) Poisson process, with accompanying l(x) defined so that
l(x) dx = probability of an accident occurring (during a year) in the road
interval x to x + dx. A highway with overpasses, bridges, and other dis-
cernible high-risk points may yield a positive probability of at least one
accident during a year at these points (e.g., at the base of an overpass),
thereby negating the second part of assumption (2). Such high-risk points
would also tend to negate assumption (4), which also might be invalidated
by chain-reaction multiple-car accidents (such as those that occasionally
occur in fog) if those are counted in accident data as more than one accident.

In practice, almost any real system will demonstrate a nonperfect degree
of conformity with the postulates of the Poisson processo In assessing the
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applicability of the Poisson model, the modeler must weigh the benefits or
applying thePoisson model (together with the insights it provides) against
the cost of inaccuracies introduced by such a simple model and the cost of
constructing a more complex mode!. Sometimes a forced degree of ignoruncc
involving details of a system (e.g., the locations of overpasses) will facilitate
application of the mode!.

The ideas illustrated above fçr a Poisson process on a line (a highway)
extend directly to the plane (to describe entities distributed over two dimen-
sions). Let the parameter S denote a bounded region of the plane (or
higher-dimensional space, for that matter). Let X(S) be the number of
entities contained in S. Then X(S) is a homogeneous spatialPoisson process
if it obeys the Poisson postulates, yielding a probability distribution

for A(S) > 0, k = 0, 1,2,... (3.96)

In this case À is a positive constant called the intensity parameter of the
process and A(S) represents the area or volume of S, depending on whether
S is a region in the plane or higher-dimensional space.

The underlying mathematical postulates of the model follow directly
those of the time Poisson process:

1. Only nonnegative integer values are assumed by X(S) and ° <
P{X(S) > O} < 1 if A(S) > O.
The probability distribution of X(S) depends on S only through the
value of A(S) with the further property that if A(S) -. 0, then
P(X(S) > I} -> O.
If SI> S2' ... , S; (11> 1) are disjoint regions, then X(S.), , X(Sn)
are mutually independent random variables and X(S. U U Sn)
= X(S.) + ... + X(S,,).

lirn P(X(S) > I} = I.
A(Sl-OP{X(S)= I}

2.

3.

4.

Generalization : As with the time Poisson process, it is not difficult to extend
these ideas to a spatially varying (nonhomogeneous) Poisson processo For in-
stance, in the plane if

À(x, y) dx dy = P[a Poisson entity is located in the interval x to x + dx, y
to y + dy)

then in (3.96), ÃA(S) is replaced by

S S À(x, y) dy dx == Ã(S)
S

(3.97)
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In this case postula te (2) is changed to read: "The probability distribution of
X(S) depends on Sonly through the value of À(S) with the further property that
as À(S) -> O, then P(X(S) ~ I} -> O."

3.8.2 Time-Space Poisson Process

Suppose that in some region of space S with area A(S) events occur in
time as a Poisson process with rate ÀA(S) per unit time. Then utilizing the
foregoing ideas about multidimensional Poisson processes, the probability
that k events occur in S in time t is

P{X(S, t) = k} = [ÀtA(S~~e-ÀrA(S) for k = 0, I, 2, ... (3.98)

Problem 3.26 applies this concept.

Example 15: Distribution of Travei Distance (" Nearest Neighbor")

Suppose that emergency response units are distributed throughout a large
region as a two-dimensional Poisson process with intensity parameter l' units
per square mile. We wish to know the pdf of the traveI distance D between an
incident, whose position is selected independently of response unit positions,
and the nearest response unit. Assume Euclidean traveI distance. (This is
sometimes known as a "nearest-neighbor" problem; in three-dimensional
space this problem has been used to determine the distribution of distance
between stars in a galaxy.)

Solution

We use the never-fail cumulative distribution method in conjunction with our
new knowledge of spatial Poisson processes.

1. Assume the incident occurs at some arbitrary point (x, y).

2. Construct a circle of radius r about (x, y).

The probability that there are exactly k response units within the
circle is

(1'nr 2)ke-r"r'
P(X(circle) = k} = k! k = O, 1,2, ...

4. Therefore, we obtain the cdf by the following reasoning:

Fn(r) == P(D::;; r} = 1 - P(D > r} = 1 - P(X(circle) = OJ

or
Fn(r) = 1 - e-r"r' r~O (3.99)

5. The pdf is

r~O (3.100)

This is a Rayleigh pdf with parameter ,v21'n. Thus, the mean and variance
an

E[D] = ±,vy=t

ab = (2 - ~)2~1'

(3.101a)

(3.101b)

Question: How could you extend these ideas to obtain other interesting
properties of the system?

Example 16: Nearest Neighbor with Right-Angle Travei Distance

Iftravel distance is right-angle, rather than Euclidean, the analysis in Example
15 follows straight through, except instead of a circle of radius r we have a
square rotated at 45°, centered at (x, y), with area equal to 2r 2. Following the
same steps in the solution,

(21'r 2)ke-2rr'
P(X(square) = k} = k!

Fn(r) = 1 - e-2rr'

fL(r) = d, Fn(r) = 41're-2rr'
tr

k = 0,1,2, ...

r~O (3.102)

(3.103)r~O

This is a Rayleigh pdf with para meter ,v 41'. The mean and variance are

E[D] =..!... J2n
4'V l'

ab = (2 - ~)11'

(3.104a)

(3.104b)

Question: In Example 4 in this chapter we derived that in an isotropic
environment a response unit traveling according to the right-angle dis-
tance metric travels 4jn = 1.273 times farther (on the average) than a
unit traveling "as the crow flies." Thus, onc might be tempted to think
that the ratio of the mean right-angle to Euclidean distances computed in
Examp1es 15 and 16 would be 1.273. In fact, the ratio is ,vnj2 < 4/n.
Why?

Hint: See Problems 3.9 and 3.10.

Further work: Problems 3.25 and 3.26.
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3.8.3 Application to Facility location
and Districting

Fi = location of Iacility i

FIGURE 3.33 IIlustrative districting with a random positioning 01
facilities.

One could apply the ideas of spatial Poisson processes to a problem of
facility location and districting of a city. Suppose that demands are dis-
tributed uniformly throughout the plane and suppose that trave! distance is
right-angle. We can consider two applications: (1) for each service request, a
response unit is dispatched from the nearest facility (the service system need
not be an emergency service; for instance, it could be a social service agency
whose personnel make home visits); and (2) the individual requiring service
travels to the nearest facility (e.g., hospital, library, "Iittle city hall," police
district station house). Each district about a facility would consist of ali
points closer to that facility than to any other.

As an agency administrator, you want to get some idea of the potential
benefits (in terms of mean travei distance reduction) of a study to optimally
locate service facilities.

Use of Poisson model to generate "upper bound," At one extreme, you
could ask: What are the response distance characteristics of the system if
facilities are distributed at random? We can answer this question by assuming
thatfacilities are distributed as a homogeneous spatial Poisson processo This
corresponds to a totaIIy unplanned system (in terms of districting) in which
the facility locations could be viewed as occurring from "throwing darts
blindfolded" at a map of the city. That is, given n facilities in any particular
region, their locations would be independently, uniformly distributed over
the region (following the "unordered ar rival times" argument of Chapter 2
for a time Poisson process).

For a right-angle distance metric, a random distribution of facilities may
yield a city-wide districting as shown in Figure 3.33. Using the result of
Example 16, the mean travei distance is

E[D] = !J2
y

7t :::: 0.627y-I/2 (3.105)

where y is the average density of facilities.

LOIVer bound, To achieve minimal mean travei distance, the facilities should
be positioned in a regular lattice, as shown in Figure 3.34. This makes
intuitive sense since a diamond gives the set of points within a given dis-
tance of its center, when right-an le distance is used (analogous to a circle
for Euclidean distance), so diamon,ds can be used to partition a city into
..Qistric!i-Q.f egual coverage, where coverage of a district is measured by
maximum possible distance from its facility.

We prove the desired result regarding E[D] in two step

FIG U RE 3.34 Regular lattice 01optimal lacility locations and districts.

STEP 1: Given that a facility's district must contain an area A, a square
district rotated at 45°, centered at the facility's position, rcsults in
minimum mean travei distance (E[D]).

Proof: (Contradiction, using perturbation method.) Suppose thcre is some
redesign of the rotated square that results in lower mean traveI distance.
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Then the new district can be constructed by taking a set of points B 1 of area
E.out of the rotated square and adding a set of points B2 of area E from out-
sl~e ~he square. The situation is shown in Figure 3.35. Then, in the redesigned
district, the new mean traveI distance is

or

But

E[DIBI] <,J 1
E[D IB2] > ,J 1

so E[D'] - E[D] > 0, which is a contradiction.

Facility
o ~

Area e____~.--;r--

FIGURE 3.36 Exchange of subregions of area E.

STEP 2: Given that we have N square districts, each rotated at 45° and
centered at the respective facility's position, and given that the
total area of the N districts must equal NA, minimal mean traveI
time is obtained by setting the area of each district equal to A.

Proof: For a random service request located in one of the N districts,
assuming that district i has area At, the mean traveI distance is

E[D] = f A2 IAI
t::1 NA 3'V 2 (3.106)

(Why?) The idea is to minimize (3.106)subject to the total area constraint,
:L:f.. 1 AI = NA. This is a straightforward problem of constrained optimiza-
tion. Using Lagrange multipliers, one finds that the minimal E[D] is found
by setting AI = A (ali i). Finally (and fortunately!), equal-sized square dis-
tricts rotated at 45° fit into the lattice shown in Figure 3.34. For this lattice

•
E[D] .: ~ ,J 21y~ 0.472y-1/2 (3.\07)

Comparing this to the mean traveI distance with randomly positioned
facilities, we have the somewhat surprising result that optimal positioning
(and districting) reduces mean traveI distance over that obtained by random
positioning by only about 25 percent.

What are the policy implications of this result?

3.9 ALTERNATIVE SPATIAL PROCESSES

The spatial Poisson process has a "no mernory" property similar to that of
the time Poisson processo In this case, the existence or nonexistence of a
Poisson entity in any region of space does not influence the likelihood of
other Poisson entities existing in nearby disjoint regions. Moreover ifwe know
that there are n points distributed in a fixed region of area A and that these
points were generated from a spatial Poisson process, then the n points are
independently uniformly distributed over the region. This is simply the two-
dimensional generalization of the "unordered arrival times" argument made
in Chapter 2 for Poisson processes in time.

However, many naturally occurring processes do not adhere to the
Poisson assumptions. For instance, one can imagine certain processes for
which the existence of one point would increase the likelihood of other
points occurring nearby. Such "clustering" processes could include hospitaIs
(which cluster due to economies of scale), certain industries, police cars,
crimes, households having certain demographic characteristics, and so on.
For these processes the spatial Poisson process is an inadequate mode!.
Similarly, one can imagine other processes for which the existence of one
point would decrease the likelihood of other points occurring nearby. Such
"spread" processes could include certain retail establishments (e.g., super-
markets, hamburger havens), urban service facilities (e.g., libraries, out-
patient clinics, "Iittle city halls"), and street intersections.

. The question is, how do we model such processes? The answer, at present,
is that models for such complicated spatially dependent processes are quite
inadequate. While we can quite successfully generalize from Poisson processes
to renewal processes in time, there does not seem to be an analogous gener-
alization for spatial processes. Still, urban geographers have devised various
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techniques for tackling this problem, and here we ilIustrate a popular
one based on partitioning the city into a regular lattice of equal size smaII
cells.

Suppose that we are interested in the number of points N in a particular
ceII of unit area. If the points are distributed according to a spatial Poisson
process with parameter y (points/unit area), then

P{N = k} = y~!-y

E[N] = Y

k = O, 1,2, ...

(1~ = y

In particular, we focus on the ratio of the variance to the mean,

(3.108)

For a spatial Poisson process, r = 1. Now, for a "spread" process in which
the existence of one point reduces the chance of another point being located
nearby, assuming that means are kept constant, one would expect that the
Poisson distribution could be modified in a way that would take probabilities
away from the tails ofthe Poisson distribution and add these to probabilities
near the mean (center) of the distribution. Such a modification would have
the effect of reducing the variance of the distribution. Thus, any spatial
process for which

is called a spread process (meaning points tend to be "spread out" over the
plane). An extreme case occurs with a perfectly regular lattice of points
which provides each geographical cell with exactly the same number of
points; then (1~ = 0, so that r = O. A spread process, sometimes also called
regular process, because of its cJoseness to a regular lattice, incJudes the cJass
of processes ranging from a perfect lattice of points to (but not incJuding)
the Poisson processo

A clustered process, on the other hand, would probably have many cells
with zero points anel others with more than predicted by the Poisson mode!.
Thus, again keeping means constant, one could obtain a pmf for a clustered
process by taking probability away from the integer values near the mean of
the Poisson process and adding this to values at or near zero and to values
in the positive tail of the distribution. This would have the effect of increasing

the variance of the distribution. Thus, any spatial process for which

is called a clustered processo As one extreme, a perfectly cJustered process
would have ali cells but one empty and that ceII would contain a number of
points totaling E[N]. (the number of cells).

As a simple example of such ~patial processes, consider a process for
which a cell has probability (1 - p) of containing zero points and a prob-
ability p of containing M points. Then,

E[N] = p+M

(1~ = M2p(1 - p)

(3.109a)

(3.109b)

so that

r = M(I - p) (3.110)

Here r > 1 if M is "sufficiently large" or if p is "sufficiently smal!." Formally,
r > 1 and thus we have a clustered process if M > 1/(1 - p) or, equivalently,
if p < (I - 1/M). Interestingly, if these inequalities are reversed, we have a
spread process rather than a clustered processo This makes sense since in the
extreme if p = 1, each cell contains exactly M = E[N] points. If the inequali-
ties were strict equalities, we would have a two-valued process whose spatial
randomness (as measured by r) is identical to that of the Poisson processo

3.9.1 Spread Process Yielding
the Binomial PM F

Rogers has studied two particular processes-one spread and one clus-
tered-that have appealing time-Poisson process interpretations and that
have been found useful in analyzing the locations of retail trade [ROGE 74].
We consieler first Rogers's spread process, the binomial processo Imagine that
entities enter the cell of interest over some time interval [O, t], initially with °
entities in the cel!. We are interested in the number of entities at time t, N(t).
Being a spread process, each time that another entity enters the ceIl the rate
at which new entities enter the cell diminishes. Thus, suppose initially that
entities enter the cell as a time-Poisson process at rate c per unit time. Then,
after the first enters the cell, the cell becomes "less attractive," so the new
Poisson arrival rate is c - b. ln general, after k arrivals, the Poisson arrival
rate is reduced to c - kb. Thus, the cell becomes less attractive in a linear
manner with the number of entities already in the cel!. We assume that clb is
integcr, so that there exists some maximum k, kmax = cjb, at which the
Poisson arrival rate is reduced to c - kmaxb = O. Thus, the maximum number
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of entities in a cell is kmax = clb, This pure birth process is characterized by
the state-transition diagram shown in Figure 3.36.

Proceeding as in Chapter 2 for the Poisson process, this process is
governed by the following set of coupled ditferential equations:

d1J?) = -cPoCt) (3.llIa)

dPm;/t) = (c - mb)Pm(t) - [c - (m + I)b]Pm+t(t)

m=0,1,2, ... ,~ - I (3.llIb)

c c-b c - (E. -1\ b

'.:(k.-~'~kb ... ~
c - 2b

FIGURE 3.36 State-transition diagram for the binomial spread processo

Proceeding as with the Poisson process, we find that

t > °
Successive substitutions into (3. I I I) for increasing values of m leads us to
prove by induction that

m = 0, 1,2, ... , ~

t > ° (3.112)

This is the binomial pmf with probability of "success" equal to (I _ e-bt).

The mean and variance are

E[N(t)] = ~( 1 - e-bt) (3.113a)

a2 _ c (I -bt) -bt
N(t) - li - e e (3.1 I3d)

The ratio of the variance to the mean is

(3.114)

which is always less than unity (which is what we want with a spread process).
While the "diminishing attractiveness" interpretation of this birth process

is perfectly valid, and quite appealing as a description of the dynamics of a
spread process, it is not the only interpretation of the processo Alternatively,
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one might imagine a population fixed with n = clb individuais. Each one
will eventually locate within the cell, but the time until such location is an
exponentially distributed randorn variable with mean s lb. All n such randorn
variables are mutually independent. Thus, at time t = 0, n "Poisson genera-
tors" are turned on, yielding a rate of transition nb from state ° to I; after
the first transition, (n - 1) Poisson generators remain turned on with a net
rate of occurrence equal to (n - \)b. This "fixed population" interpretation
of cell occupancy also yields the binomial distribution, and it could imply
markedly ditferent policy decisions in practice than the "diminishing attrac-
tiveness" interpretation. The two equally plausible interpretations provide a
good example that any particular probability law may have two, three, or
even a greater number of plausible underlying explanations. Thus, just
because a probability law assumes a particular form does not assure us that
one underlying causal model is the model explaining the process dynamics.

3.9.2 Clustered Process Vielding
the Negative 8inomial PMF

Rogers's clustered spatial process gives rise to the negative binomial dis-
tribution. In this model we assume that a cell becomes more attractive with
each additional entity that locates there. In particular, jf there are m entities
there at time t, new entities arrive in a (time) Poisson manner at rate c + bm
(c > 0, b > O). The state-transition diagram for this infinite-state pure birth
process is shown in Figure 3.37. Proceeding as usual, the set of coupled ditfer-
ential equations governing this process are

dPo(t) = -cPo(t)
dt

dP,;;/t) = (c + mb)Pm(t) - [c + (m + l)b]Pm+l(t)

(3.115a)

m = 0, 1,2, ...

(3.115b)

c c+b c + 2b l' + (I.. - I)b c + kb c + (11 - I)b c + nb

...~ ...----U- ...
FIGURE 3.37 State-transition diagram for the negative binomial cluster processo

Again we find that

i> °
Successive substitutions into (3.115) lead us to prove by induction that

m = 0, 1,2, ...
t:2:0 (3.116)
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This is the negative binomial pmf" ' with mean

and. variance

E[N(t)] = ~(ebt - I) (3.117)

O";,(t) = ~ (ebt - I)ebr

The ratio of the mean to the variance is

(3.118)

(3.119)

which is always greater than unity (which is what we want with a c1ustered
process).

AIt?ough the "increasing attractiveness" interpretation of this process is
a~pe~lmg for a c1usteri~g pr~cess, there are other plausible system dynamics
yielding the same negatíve binornial pmf.

For comparative purposes, we have sketched the mean value E[N(t)] for
ea.ch o.f the three cell occupancy laws-Poisson, binomial, negative bino-
mial=-in FIgure ~.38. Note that the binomial (spread) process reaches a

E[N (t») I
I
I
I
I
I
I
1

1
I
1

I
_______ 1T-

I Binomial process
(exponential convergence
to a saturation value)

O~~------L---------------------
Time

FIGURE 3.38 Mean value E[N(t)] for each of three processes. Model pararneters
have been adjusted so that ali three means are equal at time t.

llISee, for example, A. W. Drake, Fundamentais of Applied Probability McGraw-Hill
nc., New York, 1967, pp. 128-130,153. "
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"saturation" population, Pu" whereas the Poisson process grows linear1y in
time and the negative binomial (clustered) process "explodes" at an expo-
nential rate. Figure 3.39 illustrates each process over a 10- by 10-kilometer

city.

10 1O 1O
, '.:-: . ' '.

.:'.::

..' '..'. o'

..
" ... ."

1O O 1O O 1O

(b) (c)

. . . .

0'---------'
(a)

FIGURE 3.39 lllustrated examples of (a) Poisson. (b) binomial (spread) and (c) negative
binomial (clustered) processes. Means normalized to 1 point per unit area.

3.10 CONCLUSION

We have now completed our tour of derived distributions, geometrical prob-
ability, and spatial processes. For those interested in further study of geomet-
rical probability, we recommend the recent book by Solomon [SOLO 78].
Chapter 4 switches emphasis from space to time, dealing with congestion that
arises in queueing systems. Later chapters rely heavily on the probabilistic
modeling methods of Chapter 2, this chapter, and Chapter 4, to study con-
gestion phenomena in a spatial1y oriented urban setting.
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Problems

3.1 Review: basic concepts of probability modeling A certain town has exactly one
policeman (Jones) and exactly one burglar (Elmer). The town is divided into two
police beats, each ofwhich may be considered a straight line oflength t. Each night
the policeman makes an equally likely choice between the two beats and then spends
the whole night patrolling the selected beat. When Jones is on a beat, his position at
any time is uniformly distributed over the length of that beat.

Tonight, Elmer will start committing one burglary per night until he is appre-
hended. On any particular night, given that he has not already been caught, Elmer
is twice as Iikely to burglarize the beat that Jones is not patrolling than the one that
he is patrolling.

Elmer's burglary position is uniformly distributed over the beat that he has
selected and is independent of Jones's position, even if he and Jones happen to have
selected the same beat. Assume that Jones's position remains constant throughout
the duration of the burglary,

Given that Elmer and Jones are exactly w units of length apart on the same beat
at the time of burglary, Jones will apprehend Elmer with probability P(A IwJ, as
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shown in Figure P3.1. Note thatP(A I wJis a condilianalprabability, not a probability
density function.

P( A IwJ = 1~- ~ o ~ w ~ d) with O < d < t
elsewhere

P {Alw }
)

L- ~ __~ w
d

a. What is the probability that Elmer and Jones will both work on the same
beat tonight?
Given that Elmer and Jones are on the same beat tonight, and also given
that they are separated by a distance of more than tl4 units, what is the
conditional probability that they are separated by a distance of more than
t/2 units?
Given that Elmer and Jones are on the same beat tonight, determine the
pdf!w(w) for -00 < w < 00, where W is the magnitude of the distance
between them at the time of the burglary.

Given that Elmer has not as yet been caught and given that tonight he and
Jones choose the same beat, show that P A, the conditional probability that
he will be apprehended tonight, is (dft)[1 - t(dfl)]. Does this answer seem
reasonable for d = O and d = l?
Determine the probability that Elmer is apprehended for the first time on
the third night.
Given that Elmer has successfully completed exactly 10 burglaries, what is
the probability that Jones and Elmer worked the same beats exactly three
of those nights?
Jones is considering a new patrol strategy. He will still choose. h.is beat
randomly as before, but he will now simply stand in the center of it instead
of patrolling it. If everything else remains the same (and Elm~r does not
change his strategy), what now is the probability of apprehenslOn on any
given night if Elmer has not previously been caught? Does your answer
seem reasonable for d = O and d = l?

b.

c.

d.

e.

f.

g.

3.2 Discrete random variable. Let XI (i = 1,2) be uniforrnly, independently dis-
tributed over the integers 0,1,2, ... , m. Define the distance between XI and X2 as
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a. Determine the pmf for D.

b. Show that E[D] = j m + -Hm: 1)'

3.3 ~unctions ofrandom variables. Two emergency response units patrol uniformly
and mdependently a 10-mile stretch of road. An emergency incident occurs on the
roadway and its position is uniformly distributed, independent of the positions of
the response units. The incident requires both response units to be dispatched to the
scene. Call the two units unit a and unit b. Assume that response speed is fixed at
10 mph and that U-turns are permitted.

a. Determine the mean traveI time for unit a to reach the scene.

b. Determine the mean time until the first unit (either a or b) reaches the scene.

C. Determine the probability density function for the time until the second
unit reaches the scene.

3.4 Functions of random variables. Assume that the locations of an incident and a
r~sponse unit are independently, uniformly distributed over a rectangle with dirnen-
sl.ons .Xo, r, (see Exercise 3.1). The sides of the rectangle are defined parallel to
directions of traveI. If the incident and response unit locations are (Xl, Yl) and
(X2, Y2), respectively, the traveI distance is

a. For the case Xo = Yo, find the pdf of D.

b. For the case Xo ~ Yo, identify the ditferent regions of integration in the
X, Y sample space that yield ditferent functiona1 forms for the pdf of D.

C. (Optional) For the very brave, carry out the computations for part (b) to
find the pdf of D when Xo > Yo.

3.5 Time, speed, distance, Suppose that ambulance attendants read the following
data for four random ambulance responses:

Number of
Miles
Driven

Speed of Travel
Response (milesfhr) Time (minutes)

1.2
6.0
0.2

13.0

10
18

1
21

7.2
20
12
37.1

a. Verify that the average distance per response == d.v = 5.1 miles, the
average speed per response == Sav = 12.5 miles/hr, and the average time
per response == t.v = 19.1 minutes.
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b. Intuitively, explain why (d.v/S.v)· (60 minutes/hr) = 24.48 minutcs is great-
er than t.v = 19.1 minutes.

C. If we compute a weighted average speed SWI> where the weights sum to 1
and are proportional to the times driven at each speed, we find Swt = 16.03
miles/hr. We find that (d.v/Swt)· (60 rninutes/hr) = t.; = 19.1 minutes. Why
is this a correct procedure?

3.6 A VL systems, ]f the travei distance metric of the vehicles being located byan
A VL system is right angle, the travei distance between the vehicle's estimated and
true positions is I X.I + I Y.I. Here X. and Y. are zero mean, variance u2, inde-
pendent Gaussian random variables representing x- and y-Iocation estimation error,
respectively, as described in Exercise 3.2. Making the necessary isotropy assurnption,
argue that

EU X.I + I Y.IJ = a : ,j~ = 2U,j ;
Thus, the expected value of a Gaussian random variable with variance u2 which

is truncated at zero is E[I X.I] = E[I Y.IJ = u,.J2/n.
3.7 A VL systems. Suppose that the individual x and y errors of an A VL system
are independentIy distributed according to a Laplace pdf,

Âfx,(x) = fyJx) = 2e-llXI -oo<x<+oo, Â>O

Suppose that the radius of errar is measured directly in terms of right-angle distance,

R = I X.I + I Y.I

Show that

r~O

and thus

2
E[R] = T

[You might try obtaining (*) using both the "never-fail" method and the "infini-
tesirnal method" outlined in Example 3.]

3.8 Test of the "riglu-angle" dist ance metric, revisited In Example 4 we obtained
the probability law for the randorn variable R, the ratio of the right-angle and
Euclidean distances. ln particular, we found

E[R] = .!:::::::1.273
tt

Uk = 1 + 2 _ l~n n

Derive these results directly without first obtaining FR(·) or fi·).
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3.9. Functio~s olra~dom variables (derived distributions) Consider a square service
regton ?f umt area m which travei is right-angle and directions of travei are parallel
to the sld.es of the square. Let (XI, YI) be the location of a mobile unit and (Xz, Yz)
the location of a demand for service. The traveI distance is

where

and

We assume that the two Iocations are independent and uniformly distributed over
the square.

a. Show that the joint pdf for Dx and Dy is

!J ( ) - {4(l - x)(l - y)
D.,D. X, Y - O O<x::S;:l, O~y::S;:l

otherwise

b. Define Ryx = Dy/Dx. Show that the pdf for R isyx

{

2 1
---r

r _ 3 3
IRu() - ~ __ 1

3r z 3r 3

3.10 Ratio 01 right-an~/e and Euc/idean travei distances Jn this problem we test the
reaso~able~ess of the. ISOt~Opy assumption used in Example 4. It is appropriate to
questI.on this as.su~ptlOn smce most service regions in a city are such that 'I' wilI not
be uniforrnly distributed between O and n/2. We consider three cases.

a. Case 1. For the square service region of Problem 3.9, in which directions
of travei are parallel to the sides of the square, one might expect intuitively
that E[R] > 4/n:::::::1.273. Why? Show that E[R] = t [510g(l + .J!)
+ ,.;2 - 2] :::::::1.274.

Hint: In terms of Problem 3.9, recognize that

R = 1 + Ryxv~+ R;'"
b. Case 2. Suppose that the square-unit-area service area of part (a) is

ro.tated at a 45° angle to the directions of traveI. In such a case intuition
~TlIght.lead o~e to .think ~h~t E[R] would be less than 4/n. Why? To
mvestigate this conjecture rt IS helpfuI to use the relationship

IXI - xzl + IYI - Yzl = .J2 Max [lx~ - x~l,IY~ - Y~1l

where the primed variables are defined relative to a coordinate system
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rotated at 45° with respect to the original coordinate system. Show that in
such a case

E[R] = jH.J2log (l + ,.j2) + 2,.;2 - 4] = 1.271

(Intuition is correct but the result is closer to 4/n than might otherwise have
been eipected.)

,
c. Case 3. Suppose that the mobile unit is located uniformly on the perim-

eter of a square rotated at 45° to the directions of traveI. Suppose that the
unit travels in a shortest (right-angle) distance manner to the center of the
square. Again, 'I' is the angIe at which the directions of travei are rotated
with respect to the straight line connecting the unit's initial position to the
center of the square. Show that

i. F'I'(Y) = W + tan (y - n/4)], O ~ y ~ n/2.
..../2 - r2

FR(r) = 1 - r ' 1 ~ r ~ ,.;2.ii.

iii. E[R] = .J2 log (1 + ,.;2) = 1.246.

Do ali the results for E[R] check with your intuition ?

3.11 Quantization model (continued) In Example 5 we described a quantization
model for odometer readings. We stated that [(3.31)]

E[K] = E[D]

ale ~ a~
Prove these results. What implications do these results have for an actual data-

gathering experiment?

Hint: Do not work directly with (3.30); instead, demonstrate the validity ofthe
desired results for any (D = dJ and then integrare over ali d.

3.12 Truncated times Assume that an activity commences at time TI and terrnin-
ates at time Tz. The exact duration of the activity is T2 - TI == T. Now assume that
times are recorded by some mechanism that records time x as LX'I IXJ, for some
fixed IX. Using this mechanism, the recorded duration of lhe activity is LT2 + IXJ
- LTt + IXJ.

a. Argue why it is reasonable to apply the distance quantization model
(Example 5) to this situation, with the following correspondences:

D: T2 - TI == T

0: TI + IX - LTI + IXJ == <I)

K: LTz + IXJ - LTI + IXJ == J

b. Show that J = LT + <l>J.
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3.13 Zero-demand zone Consider a unit-square response area, as shown in Figure
P3.13(a). We assume that a response unit and incident (i.e., requests for service) are
distributed uniforrnly, independently over that part of the unit square not contained
within the central square having area a2• Travei occurs according to the right-angle
metric, andtravel is allowed through the zero-dernand zone. We want to use condi-
tioning arguments to derive the expected travei distance W(a) to a random incident.

Let (XI, YI) and (X2, Y2) denote the Iocations of the response unit and incident,
respectively. Let S (S') denote the set of points within (outside) the central square.
Let A = [(XI> YI) E S} and B = ((X2, Y2) E S}.

a

o
(a) (b)

Now focus on a unit square on which incidents and the response unit are uni-
forrnly, independently distributed over the entire square, yielding an expected traveI
distance E[D].

a. Show that

E[D] = j = E[D IA Íl B]P(A Íl B) + 2E[D IA Íl B']P(A Íl B')

+ E[DIA' Íl B']P[A' Íl B')

= ja(a2)2 + 2E[D I A Íl B']a2(1 - a2) + E[D IA' Íl B'](1 - a2)2

b. We wish to derive E[D I A' Íl B'] = W(a). The relationship above allows us
to compute this quantity by finding the easier-to-compute quantity
E[D I A Íl B']..(Note the similarity of approach to Crofton's method.)

i. To find E[D I A Íl B'], argue that one need only consider the incident
to be located in RI or R2' as shown in Figure P3.13(b).

ii. Show that
2a

P((X2, Y2) E RI! (X2, Y2) E RI U R2} = a + 1

iii. Show that

E[DIA n Rd = t + tia
E[D IA n R2] = i + i a
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c. Finally, find W(a). As a check, W(O) = j-, W(l) = H· (Why?)

3.14 Square barrier Suppose that the conditions of Problern 3.13 apply, exc~pt
that in addition, no travei is allowed through the central square. We wish to derive

Pr(a) = expected travei distance to a random incident

We use perturbation arguments to write

where W(a) is the mean travei distance from Problem 3.13 and WE(a) is the mean
extra (perturbation) distance due to the barrier.

Show that the probability that the perturbation term is strictly positive isa.

b. Show that the conditional extra travei distance, given that the perturbation
term is positive, is 1a. Thus,

_ 1 ( a )2
WE(a) = '3a a + 1

As a check, verify the reasonableness of the result W'(l) = 1.

. I 'd f
3.15 Rectangular grid of /wo-way streets Consider an ti X m re~tan~u ar gn o
two-way streets running north-south and east-west as shown m .FIgure P3.15.
Assume that incident positions are distributed uniformly over the grid, A response
unit patrols the grid in a uniform manner. The incident location and the response
unit Iocation are independent. Let

D = travei distance between the response unit and the in~ident,
assuming the unit follows a shortest path that rernams on
the streets of the grid

11I = 5,---'--'--'--'--'--"1'
4

3
21-..+---+---1c--+--\--j--r--j

o 2 3 4 5 6 7 8=11
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a. (Optional) By carefully and patiently conditioning on the various possible
locations for the incident and response unit, show that

_ 1 -I- 4n(m + I)m(n + 1)
E[D] - 3(n , m) + 3[(11 + I)m + (m + 1}1I]2

b. Show that

j-(n -l m) ::;:; E[D] ::;:; t(1I + m + I)

where the left-hand inequality becomes an equality when n or m is zero
and the right-hand inequality becomes an equality when 11= m. Thus, the
continuous approximation, (3.12a), is never in error by more than -j. block
leng th,

3.16 Perturbation variables: one-way streets Consider a very large grid of equally
spaced one-way streets, with the direction of travei alternating from street to adja-
cent parallel streêt. Assume that the positions of the response unit and the incident
are independent and uniformly distributed over the grid. lt is assumed that the
response distance -frorn the response unit to the incident is a shortest path that
remains on the streets of the grid and obeys the one-way constraints. Use perturba-
tion variables to demonstrate that the mean extra distance traveled to the incident,
due to the one-way travei constraints, is tIVO block s.

3.17 Cauchy random variable We recall from Section 3.3.3 that random variable
XI has a Cauchy pdf if

I
/x,(y) = n( I + yZ) -00 <y < +00

a. Suppose that S2 = X, + Xz, where X, and Xz are independent Cauchy
random variables, each having pdf Ir.<.). Using the integral identity

1 f-~ dw (I/n)(n + I) I
1t2 _~ (I + w2)(n2 + (y - W)2} = 11 y2 + (11 + 1)2

show that S2 has a pdf 2f[n(4 + y2)].

b. Proceeding by induction, show that

S; == X, + X2 + ... + Xn (ali X, independent)

has a pdf 1I/[n(IIZ -\- y2)].

c. Thus, verify that the average of n independent Cauchy samples (i.e.,
Vn == Sn/II) has a Cauchy pdf 1/[7t(1 + yZ)]. Thus, "averaging together" a
number of independent Cauchy samples yields a pdf for the average iden-
tical to that of any one of lhe individual samples. (This result contrasts
sharply to most random variables, for which averaging of n independent
samples reduces the variance by a factor of /1-'.)
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3.18 Crofton's method Suppose that X, and X2 are two points independently uni-
formly distributed over a highway segment of length a. Define

p>O

Use Crofton's method to show that
2aP

E[DP] = (p + l)(p + 2)
)

3.19 Crofton's method Consider again policeman Jones and burglar Elmer of
Problem 3.1. Use Crofton's method to verify that the apprehension probability PA

[Problem 3.1(d)] equals (d/l)[l - j.(dfl)].

Hint: Here the homogeneous solution of the associated differential equation
cannot be discarded.

3.20 Crofton's method Here we wish to apply Crofton's method for finding mean
values to the problem of finding the mean Euclidean distance,

where (X" Y,) and (Xz, Y2) are uniformly and independently distributed over a
circle of radius r. Here, for instance, (X" Y,) and (XI> Y2) could be lhe locations of
an emergency and a helicopter response unit, respectively, and D would be lhe
travei distance to the emergency.

a. By arguments similar to those used in lhe text, show that

where

/l = E[D]

u, = E[D Iexactly one of lhe points is in lhe infinitesimal ring
of width Ór on the circ\e circumference]

/l + Ó J.l = mean traveI distance in a circ\e of radius r + br

b. Show that
1 fZ)" x 32r/l = - 2X2 cos" I - dx = -

I ttr 2 o 2r 9n

Hint : From tables of integraIs, you may find useful

f - xn+1 COS-' x I f xn+1 dx
xn cos I X dx = fi + 1 + n + 1 .v'1 _ x2
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c. Use your results in parts (a) and (b) to obtain

128
f.l = E[D] = 457l ~ 0.906r

~ 0.5Lv'A

where A = ttr 2 is the area of the circle.

Note: Vou have just derived one of the constants in Table 3-1.

3.21 Expectedvalues Suppose that two points (XIt Yl) and (X2, Y2) are uniformly
and independently distributed over a circle of area A. Assume that the traveI dis-
tance D between the two points is the right-angle traveI distance

Argue that

4128!A -E[D] = - - -~ 0.650~ An 45n n

Hint: Consider D to be the product of the Euclidean distance and a scaling
factor R, the ratio between the right-angle and Euclidean distances.

3.22 Crofton's method Use Crofton's method to rederive (3.12a) for the mean
travei distance of a rectangular response area.

Hint: Points in the infinitesimalIy thick "frarne" surrounding the original
rectangle are not indistinguishable, as they are for the circles.

3.23 Coverage; Robbins's theorem on random sets Imagine a square region of a city
having unit area. Suppose that there are N ambulettes whose positions are inde-
pendently and uniformly distributed over a region T consisting of alI points in the
city whose distance from the square is not greater than a. The area of Tis 1 + 4a
+ na-, A point in the unit square is said to have sufficient ambulance coverage if at
least one ambulance is within a (Euclidean) distance a of the point. Find the expected
area within the square which is sufficiently covered.

3.24 Coverage o/ a square lattice by a rectangle A city' s geographical structure is
being placed on a computer. Ali coordinate positions are being quantized, where
the unit of quantization is 500 feet. The quantization points comprise a lattice that
runs east-west and north-south. The board of elections wishes to know how many
quantization points will be contained in an arbitrary rectangular election district of
dimension l (east-west) and m (north-south).

Assume that the location of the election district on the lattice can be modeled as
random (but the sides are parallel to the two directions of the lattice). Let N be the
number of lattice points contained within the election district.

I
I
I
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a. Show that

E[N] = lm

b. Let l = p + q, m = P + Q (O::;:q, Q < 1). Show that

o}, = q(1 - q)Q(l - Q) + l2Q(1 - Q) + m2q(1 - q)

f 3.25 Spatial PoisSOJ1process SuppJse that response units are distributed through- .
out the city as a homogeneous spatial Poisson process, with an average ofr response
units per square mile. Assume that the traveI time between (Xl, Yl) and (X2' Y2) is

t= IXl -x21 + IYI -Y21
VX Vy

where Vx and Vy are traveI speeds in the directions of the abscissa and ordinate,
respectively.

Assume that an incident occurs somewhere in the city, independent of the loca-
tions of the response units.

a. Find the pdf for Ti; where

Tk = traveI time to the kth nearest
response unit, k = I, 2, ...

Hint : The set of points that are a given traveI time from the incident
is given by a diamond centered at the incident.

b. Find E[Tk] and aj.. and note their functional dependence on k.

3.26 Space-time Poisson process Consider a highway thut starts at x = O and
extends infinitely eastward toward increasing valucs of x. Automobile accidents anel
breakdowns occur along the highway in a Poisson manner in time' and space at a
rate r per hour per mile. Any accident or breakdown that occurs remains at the loca-
tion of occurrence until serviced.

At time t = O, when there are no unserviced accidents or breakdowns on the
highway, a helicopter starts from x = O flying eastward above the highway at a
constant speed s. As a service unit, the helicopter willland at the site of any accident
or breakdown that it flies over. Moreover, given at time t the helicopter is located at
x = st, the helicopter can be dispatched (by radio) to service any accident or break-
down that occurs behind it (i.e., at values of x::;: st). We assume that any such
dispatch occurs immediately after the accident or breakdown occurs.

We are interested in the time the helicopter first becomes busy, either by landing
at an accidentjbreakdown site or by being c\ispatchec\ to an accidentjbreakc\own
behind its current position; in the latter case, the instant of dispatch (not the time of
arrival at the sccne) is the time of interest.

Let
T = time that the helicopter first becomes busy
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a. Show that T has a Rayleigh pdf with parameter ..;'2sy:

I~O
implying that

E[T] = l.. /n
2'V sy

af. = (2_ ~)_l
2 2sy

b. Let
P == probability that the first accidentjbreakdown is a dispatch

incident behind the helicopter

- P == probability that the first accidentjbreakdown occurs as a result
of patrol (i.e., the helicopter discovers it)

Show that P = 1 - P = t·

Hint: Condition on the event that the first accidentjbreakdown occurs
in the time interval (t, I + dt).

c. Let

x == location of the first accidentjbreakdown that the helicopter
services

Show that

E[X] = i.. [st:
8'V Y

d. Suppose that

LI = time of first accidentjbreakdown that the helicopter flies over,
assuming that it is no longer dispatched by radio (i.e., ali
incidents are helicopter-discovered incidents)

L2 = time of first accidentjbreakdown that the helicopter is dis-
patched to, assuming that it never services accident/break-
downs that it flies over

Then, for instance, T = Min[Lt. L2]. Show that LI and L2 are identically
distributed Rayleigh random variables, each with parameter ..;'sy. Finally,
argue that LI and L2 are independent, thereby conc\uding that the minimum
of two independent Rayleigh randorn variables, each with parameter ..;'7,
is itself a Rayleigh random variable with para meter ..;'2y.

3.27 Circular city, revisited Suppose that two points (RI> O2) and (R2' O2) are
independently, uniforrnly distributed over a circular city of radius ro and area A =
ttr Õ. Suppose further that this city has a large number of radial routes and circular
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ring routes so that the traveI distance between (RI> 01) and (R2' O2) can be accur-
ately approximated as

where O ~ 101 - 021 ~ tt signifies the magnitude of the angular difference be-
tween 01 and O2, ln words, traveI from an ~)Uterpoint, say, (RI> 01) if RI > R2•
to an inner point (R2' O2) first occurs along a radial route to a ring located a dis-
tance R

2
from the city center, and then along that ring (in the direction of minimurn

travei distance) to (R2' O2); the same path is traveled in reverse if travei is from
(R2' O2) to (RI> 01), A sample path is shownin Figure P3.27.

City center

'o

a. Define
W=IRI-R21

Z == Min [RI> R21

Show that

(
l..[!. - 4~ + ~(~)3J

fw(w) = ~o 3 1'0 3 'o
O ~ w ~ 'o
otherwise

and

O ~ z ~ ro

otherwise

b. Verify that

and
8

E[Z] = TIro
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g. Determine the mean and variance of the queue length (number of vehicles)
at traffie light 1 at the instant before the light turns green. (This is a primer
for Chapter 4.)

h. A traffie engineer adjusts the phases of the two traffic lights so that 01

O2 = O (relative to 12: 00 noon). Suppose that at 12: 00 noon we are given
eonditional information that no vehicles have left a during the last 8 minutes.
Carefully sketch and label the probability density funetion for the time of
arrival at b of the next vehicle to arrive there.

3.30 Expected travei distances in a two-city area Consider the cities of Camville and
Bigton, which are separated by the River Charlie. Only the t-mile-Iong Haywire
Bridge conneets the two towns. The layout of the cities is shown in Figure P3.30.
The population of eaeh of the two eities is uniformly distributed throughout the
eities. Camville has a density of Â.c people per square mile; Bigton's density is ÀB

people per square mile.

- c •

1 Street directio
in both

"r
Camville

cities
___ u---j

! Haywire -11- River -Bridge Charlie

i-v-J
Assume that

wB Bigton (i) O ~ v~u

1 (ii) /B - v~lc- u
Ali distances are in miles

'~mile

1~·~---------~----------4·~1
a. Find the expeeted traveI distance between two randomly seleeted people in

CamvilIe; find the expected distance between two randomly selected people
in Bigton.

b. Find the expeeted distance between a randomly selected person in CamvilIe
and a randomly selected person in Bigton.

e. Find the expected distanee between two randomly selected people in the
greater Carnville-Bigton metropolitan area.

d. Find the expected distance between two randomly seleeted people, one from
each town, assuming that one can eross the River Charlie at any point along
the tBmiles of Bigton that run along the river. By how mueh does your
answer differ from your answer in part (b) 1

I

ns
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e. Compute numerical values for ali the questions above assuming t~at
i. t

B
= 4 miles ii, ÀB = 2,000 peoplejsquare m~le

te = 6 miles Àe = 1,000 people/square mile

u = 2 miles
v = 1 mile

WB = 5 miles
Wc 1= 3 miles

3.31 Assigning commuters to subway stations Figure P3.31 shows an urban area
whieh is served only by a mass-transit railline with four stops (A, B, C, ando D) as
shown. There is a single destination at point T for alI trips generat~d from this arca
(assume that alI trips go exaetly to point T) during each day's morrung rush hour.

A B C D

C' \,
v

~T

\- 3km

1--1 km---1

2km

+ Ikm

1
\.•••~ __ 1 S km --....,.~IDirections

of travei

ln order to get to a transit line station or to walk directly to T, the resi.dent.s of
the area must walk on an "infinitely dense" grid of urban streets whose directions
run parallel to the boundaries of the area.

The following information is now given:

During the morning rush hour the area generates 200 trips per km2 with
trip origins distributed uniformly.

Headways between trains are constant and equal to 6 minutes, and each
train ri der is equally likely to arrive at a station at any time between two
successive departures of trains from that statio~. (Ali rider~ are ~ssumed to
be able to ri de on the first train to leave a station after their arnval there.)
Stops at each station are 1 rninute long.

1.

2.
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3. Trains traveI between stations at a speed of 30 krn/hr (this incIudes an
adjustment for acceleration and deceleration periods). People walk at a
constant speed of 5 km/hr.

4. The sole criterion that each individual uses to determine his/her route is to
minimize the expected total trip time to T (incIuding time spent waiting for
and riding on trains). Each individual is assumed to know ali the informa-
tion given above concerning traveI speeds, headways, and so on.

a. Determine the number of riders who will be using each of stations A, B, C,
and D each day, as well as the number of those that will be walking directly
to T.

b. Compute the expected traveI time for a random resident of this are a each
day,

c. Draw the boundary of the region whose residents are 9 minutes or less away
from T. Repeat for the 20-minute boundary. (Be careful in your work.)

d. Repeat part (a) by making the change in the initial data indicated below,
while keeping everything else the same as before. (Each part below is sepa-
rate.) •

1. The train speed increases to 40 km/hr.

2. Train headways are increased to 10 minutes.

3. Train speed ~ walking speed.

e. Repeat part (a) by assuming that headways between trains are described by
a negative exponential pdf with a mean of 6 minutes.

3.32 Optimal district design in terms of city blocks In this problem we shall examine
the question of optimal district design for cases in which the dimensions of a district
can assume only integer values due to the grid structure of streets.

Consider again the case described in Problem 3.15, which involved an n x m
rectangular grid district with two-way streets. In that problem you have shown that

1 4 nem + 1)m(n + 1)
E[D] = 3(n + m) + 3[(11 + l)m + (m + 1)11]2

and that

t(n + m) ~ E[D] ~ t(1I + m + 1)

Suppose now that we wish to design a district so as to minimize E[D], subject to
the constraint that the area of the district is greater than or equal to some value A
(i.e., mil ~ A). (It is not reasonable to set an equality constraint since m and n can
take only integer values.) For instance, if A = 44, we wish to find n and m such that
E[D] is minimized and the district contains at least 44 city blocks.

a. Consider the quantity

4 ntm + l)m(n + 1)
Q = 3[(n + l)m + (m + l)n]2
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d tI e constraint n + m = C (where C is a positive integer constant).
un er 1 (if C
Argue that under this constraint Q is maximized when n =. n:.1 IS an
even number) or n = m + 1 (if C is an odd number), and minimized when

n = O or when m = O.

Hint: Q is symmetric in n and m.

Sh~w that the following algorjthm will give the optimal district dimensions

[LARS na]:
b.

STEP 1: Set i = r";:;fl, where rxl = smallest integer greater than or equal to x.

STEP 2: Set j = i-I if i(i - 1) ~ A; otherwise, set j = i.

STEP 3: Set k = i + 1, t = j - 1.

STEP 4: lf kt ~ A, set i = k,j = I; return to Step 3. Otherwise, stop; the optimal
district dimensions are n = i, m = j.

c. Apply your algorithm to find the optimal district dimensions for the case

A =44.
Compare numerically E[D] for the cases: m = 7, n = 7; m = 6, n = 8;
m = 5, n = 9; m = 4, n = 11. (Ali these designs satisfy mil ~ 44.) What
do you conclude from these numerical comparisons?

d.
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