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FIGURE 3.29 lllustrative positioning of random lattice.

or

EINT)] =¢ (3.76)

as we might have expected intuitively. This is a result that generalizes readily
to two and more dimensions (see [KEND 63, pp. 102-104)).
If { = p + q, where p is integral and 0 < g < 1, the variance is

ok =q(1 —q) (3.77)
How did we obtain this result?

Hint: Recognize (3.77) as the variance of a Bernoulli random variable.

Question: Can you compare the mean coverage of the random position
model (Example 10) to the mean coverage of the lattice-position model
(Example 11)?

Further work: Problem 3.24.

The coverage examples discussed above are illustrative of the types of
problems that can be tackled using coverage concepts. However, apparently
simple variations in coverage model assumptions seem to yield an intractable
model much more readily than do models employing more conventional
(non-area-based) random variables.

3.7 EXPECTED TRAVEL DISTANCES AND TIMES:
SOME PRACTICAL RESULTS

Much of the material so far in this chapter has direct applications to the
important problem of estimating the expected value of the distance covered
(or travel time needed) by urban response units in traveling to the location
of requests for assistance. In this section we will discuss this problem further
and develop some simple approximate 1ol which are often very useful in
practical applications.

3.7.1 Simple Model
Example 12: Design of a Response District l |

Suppose that we have once more the situation described in Exercise 3.1, where
requests for assistance are medical emergencies andsthe'urban response.unit is
-an-ambulette.-Under the assumptions that (1) locations of a medical emer-
gtmcy (X1, Y;) and of the ambulette (X,, Y,) are independent and uniformly
distributed over the response district, and (2) travel is parallel to the sides of
the rectangular response area, the travel distance [from (3.1 1)] is given by

D=|X, — X;| +| Y, — Y,|

From Exercise 3.1, we then have that

E[D] = i[X, + Y,] (3.12a)

whert? Xy and Y, are the sides of the rectangle (see Figure 3.3).dnsthis example
we wish to formulate and solve the problem-of opti istri S

investigate s L - pmal, distis
the w_ of our results to suboptimal designs.

Solution i - gl

To find the district dimensions which lead to the minimum expected travel
distance, we must keep the area of the response district 4, = X, Y, constant
and minimize (3.12a) subject to the condition Y, = Ao/ X,. Without this
constant, a zero area (point) district would be optimal, an obviously infeasible
result considering that the collection of districts in a city must usually cover
th‘e entire city (which has fixed positive area). Not surprisingly, (3.12a) is
minimized when the rectangle becomes a square,

Xo = Y, = N/A_o (3~78)
In that case we have
E[D] = 3/ 4, (3.79)
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is minimized when

Yo Xo \/To :
v = s = Vo, (3.80)
in which case .
e 2 [ Ay ‘
E[T] = 3 s (3.81)
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Intuitively speaking, the optimal shape of the district, as given by (3.80),
is the one for which it takes as much time to traverse thc dlstrlct from ‘east to
west” as from “north to south.” > \

The expressions for E[D] and E[T}turn out to be:'*“robust” (i.e., rather
insensitive to the exact values of X, and Y,). To see this, let us examine the
case where

Xo =0aY, (3.82)

where @ is a positive constant. Without loss of generality we assume o > 1
and, as before, we set Ay = X, Y,. Then (3.12) can be written as

E[D] = 9;712?/_@ - %JA—O o (“/f‘/ D /A, (3.83)

The second term in (3.83) is the amount by which E[ D] deviates from its mini-
mum value in (3.79). For & = 1.5 that term becomes equal to 0.014./ 4, (i.e.,
E[D] is only about 2 percent greater than its minimum value). Even for
o =4, E[D] is only 25 percent more than its minimum value. An entirely
similar analysis can demonstrate the robustness of (3.80).

Results such as those of (3.79) and (3.80) can be derived for various dis-
trict shapes. The first three columns of Table 3-1 summarize the equivalents
of (3.79) for a square district, a square district rotated by 45° with respect to
the right-angle directions of travel, and a circular district. The following four
cases are included:®

1. Euclidean (straight-line) travel when the response unit is randomly
and uniformly positioned in the district.

2. Case | with right-angle travel.

Euclidean travel with the response unit located at the center of the
district.

4. Case 3 with right-angle travel.

In all cases it is assumed that the locations of requests for service are uni-
formly distributed in the district and independent of the location of the ser-
vice-unit. When the constants in Table 3-1 are multiplied by /4, the square
root of the area of the district in question, E[ D] is obtained. In some instances
(e.g., a square district with a randomly positioned response unit and Eucli-
dean travel) the constant of interest is not- known exactly and the best known
approximation, to two-decimal-place accuracy, is shown. Some of these con-
stants have already been derived in this chapter or will be derived in the
Problems.

8A few results for metrics other than Euclidean or right-angle are derived in the
Problems.

¥,

Proportionality constants for determining mean travel distances.

TABLE 3-1

Approximation for
“Fairly Compact and

Perfect,
Four-Sided

Diamond 1

District

Shape of

Metric

Fairly Convex™ Areas

Circle

Square

in Use

Response unit

0.52

128
457A/

= 0.511

n

0.52

14/2

0.52

Euclidean

travel

Right-angle

is randomly
positioned

0.67

= = 0.650

4

4.128
n-457a/

= 0.660

30

= 0.667

atfen

travel

in the district

0.38

2)

= 0.383

6

=3 = 0.471

/2 +¢n( +

0.383

T+ +vD) .

6

Euclidean

Response unit

travel

is located

0.50

Right-angle
travel

at the center
of the district

1Square rotated by 45° with respect to the directions of travel in the case of right-angle travel.



136  Functions of Random Variables and Geometrical Probability Ch. 3

The three district geometries included in Table 3-1 are “special cases” of -

rectangular, diamond-shaped, and elliptic districts. If one varies the district
dimensions of each type while constraining district area to equal a constant
Ay, E[D] is minimized by the symmetric geometries represented in Table 3-1.

It can be seen from Table 3-1 that, for any given district area 4,, E[D] is
very insensitive to the exact geometry of the district. This can be confirmed
by deriving E[D] for other possible district geometries, such as equilateral
triangles or piece-of-pie-like sectors of circles. Moreover, for any given dis-
trict geometry, the value of E[D] is insensitive to changes of the dimensions of
the district that might make it appear to deviate appreciably from its optimum
shape. This, too, can be confirmed by performing a sensitivity analysis similar
to the one for the rectangular district in Example 12.

From these observations it can be concluded that we can use the first
three columns of Table 3-1 to infer similar approximate expressions for
E[D] that apply to districts of any shape as long as (1) one of the dimensions
(e.g., “length”) is not much greater than the other dimension (e.g., width),
and (2) major barriers or boundary indentations do not exist in the district.
Districts that satisfy both of the conditions above will be called here, infor-
mally, “fairly compact and fairly convex districts.” We can now state the
following:

For fairly compact and fairly convex districts and for independently and
spatially uniformly distributed requests for service,

E[D) = c-./4, (3.84)

where A, is the area of the district and-eis-a-constant that depends only on
the metric in use and on the assumption regarding the location of the
response unit in the district.

The last column of Table 3-1 lists values that can be used for ¢ in (3.84)
for the four combinations of response unit locations and metrics that we have
examined here. In all cases, we have selected the largest value of ¢ listed in
each row of the three leftmost columns of Table 3-1.

When the effective travel speed is independent of the distance covered,
one can use the constants in the fourth column of Table 3-1 to approximate
the expected travel time, E[T], as well. In that case we have

[

E[T]= = /4, (3.85)

in the case of Euclidean travel (assuming that the effective travel speed v is
independent of the direction of travel) and

o[ Ae
ElT]= c‘/vxv,

(3.86)
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for right-angle travel. In this latter case, the district “compactness” statement

. _requires that

E[Tout-welt] = E[Tnonh-nouth]
-
That is, it takes on the average about as much time to traverse the district
from east to west as from north to south.

Another-observation.that can be made on the basis of the foregoing dis-
cussion is that both E[D] and E[T]are proportional to the square root of the
district.area,..d,, irrespective.of-the-specific distance-metric.in use. This is
hardly surprising since this relationship is basically a dimensional one: dis-
tance is the square root of area. More formally, if the coordinates of each
point (x, ) in the district of interest are multiplied by /m (m > 1) [i.e.,
point (x, y) now becomes point (/m x, o/m )], then the area of the district
increases m-fold but the length, L, of any given route between the pair of
points (x,, y,) and (x,, y,)—in the original district—becomes equal to ./m L
in the expanded district.

Equivalently, we can state that E[D] and E[7] must be proportional to the
inverse of the square root of the density of response units in a district, for
districts with more than one response unifl‘I}gat is, if a district of area A is
divided into n approximately equal fairly convex and fairly compact sub-
districts of responsibility (whose shapes may vary), then

E[D] = ¢ % " 7”7! \ (3.87)

where p denotes thespatial‘density of service'units. We shall derive the same
functional type of relationship in a somewhat different context later in this
chapter [cf. (3.101a) and (3.104a)].

3.7.2 More Realistic Travel-Time Model

In most practical situations, the effective travel speed of urban response
units depends on travel distance: longer-trips; in general, are taken-at a
higher -average-speed than are shorter trips. It is therefore desirable to
develop expressions for E[T] that take into consideration some types of
functional re]ationshipg between travel time and travel distance [unlike
expressions (3.81) and” (3.86), which assumed that effective travel.speed
remains constant with distance}:

One plausible model is the following. Let us assume that urban service
vehicles responding to a call, first go through an acceleration stage (perhaps
while maneuvering their way through side streets, turns, etc.) until they reach
a cruising speed that they maintain through the middle stage of the trip
(while, perhaps, traveling on highways, thoroughfares, etc.) up to the final

) ) ) ) ) ) ) J )
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stage of it, during which they decelerate to a stop. Let us fuqther assume that
during the initial and final stages, vehicles accelerate (or decelerate) at a con-
stant rate of ¢ miles/min? and that during the middle stage, travel is at a
constant cruising speed of v, miles/min.

For trips of length less than 2d, (where d, = v?/2a is the distance needed
to reach cruising speed) the cruising sBeed will never be reached; this is not
the case when the travel distance D is greater than 2d,. Using the well-known
physical rmaccelerated and constant speed travel (D = ar2/2
and D = wvr), it is then easy to conclude that the conditional expected travel
time E[T| D = d] for any given travel distance is

E[T|D = d] = 2\/2 ford <2d, (3.88)
a

E[T|D=d] == °+

_i
v, T

e % ford > 2d, (3.89)

One can obviously think of many other physical scenarios that would lead to
different expressions for E[T'| D = d]. A considerable amount of field data,
however, suggests that (3.88) and (3.89) often provide truly excellent approxi-
mations for many urban services—see, for instance, [KOLE 75, JARV 75,
HAUS 75].

An expression for the unconditional expected travel time, E[7], can now
be written:

E[T] = r E[T|D = x]fy(x) dx — j chng(x) ds
+ _f fu(x) dx _ (3.90)

In order to evaluate the two integrals in (3.90) it is necessary to know the pdf
for the travel distance, f(x).

Example 13: Expected Travel Time in a Square District

Consider a 1- by 1-mile-square fire district with a firehouse located at its
center. Fire alarms are distributed independently and uniformly within the
district and the trayvel metric is right-angle with directions of travel parallel to
the sides of the square. Measurements have shown that the “cruising speed”
for fire engines is v, = v, = v, = 30 miles/hr and vehicle acceleration and
deceleration (as described above) is @ = 0.5 miles/min2; that is, it takes, on
the average, about 1 minute of travel for the fire engines to accelerate up to
(or decelerate down from) cruising speed. (These values are rather typical, as
field data show—see below.) It follows that d, = v2/2a = 0.25 mile.

v
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From (3.88) and (3.89) we then have (in minutes)

ELT|D = d] = {23/2“/7 for d < 0.5 mile
2d + 1 for d > 0.5 mile

From the fact that D, and D,, the distances traveled in the east-west and
north-south directions, respectively, are independent random variables dis-
tributed uniformly between U and 4 mile, it is easy to show, using the tech-
niques of this chapter (see Problem 3.9), that for D = D, + D, we have

_ for0 < x <4
Jo(x) {4(1 — x) for} <x <1 (3:91)

Substituting for E[T| D = x] and f,(x) in (3.90), we then obtain

1/2 . 1
E[T] = fo 23/2 /% Axedx + L/z % + DA — ) dx = 1.97 minutes
for the average travel time in responding to a fire alarm in this district.

Unfortunately, the pdf for the travel distance f,(x) is often difficult to
obtain, either theoretically or from field data. The following approximate

expression for E[T|D = d] is then often used in order to overcome this
problem:

E[T|D=d]=vi+% ford>0 (3.92)

This expression is compared with (3.88) and (3.89) in Figure 3.30. Note that
(3.92) is a “conservative” model for E[T'| D = d] in the sense that it provides
an upper bound for (3.88) and (3.89) and is also a good approximation to it
for all values of D, when 2d, is relatively small by comparison to the distances
that a response unit usually travels. The physical interpretation of (3.92) is
also simple: a fixed amount of time (= v./a) is spent getting ready for each
trip and then the trip takes place at a constant travel speed,® v

Obviously, the advantage of (3.92) is that f,(x) is no longer necessary to

develop a simple expression for the unconditional travel time E[T]. For we
now have
D v,

°It is also possible to have this effective travel speed depend on the direction of travel
(e.g., as in the case of right-angle travel).
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FIGURE 3.30 Comparison of two models of the expected travel time versus
travel distance relationship.

and so

(En=E2,2 (3.93)

Example 13: (continued)

For our 1- by 1-mile-square-district example, it is obvious by inspection that
E[D] = 0.5 mile (cf. Table 3-1). It follows that, with », = 0.5 mile/min and
a = 0.5 mile/min2, E[T] = 2 minutes, or only about 2 seconds more than our
earlier exact estimate! The very close agreement between the two estimates
may seem surprising in view of the fact that 2d, = 0.5 mile in this case, or 50
percent of the full range of values of the travel distance D. "

The example above is not atypical. Estimates of E[T] obtained through
(3.92) and (3.93) are usually very close to estimates obtained through the
time-consuming approach summarized by (3.88)—(3.90) for the values of v,
and a one encounters in urban service applications.

Table 3-2 lists four sets of measured values of v, and a for four different
cities in the United States. The data were collected by the fire departments in
these cities [HAUS 75]. Netesthessimilarity=of-thesvaiuessfor-thecruising:
apeeds: From Table 3-2 it can also be inferred that the constant v,/a typically
adds about 0.5 to 1.0 minute to E[T]in (3.93).

In this section we have thus concluded that:

Sec. 3.7 Expected Travel Distances and Times 141

TABLE 3-2 Cruising speeds and accelerations.!

ve (miles/hr) "~ a (miles/min?)
New York, N.Y. 39.1 : 0.48 I =4
Trenton, N.J. 34.8 5 1.09
. Yonkers, N.Y. 33.9 0.86
Denver, Colo. . 39.2 1.05

1Values of the cruising speed, v., and acceleration, a for
four fire departments in the United States [HAUS 75].

The travel time
calcu]atlon of E[T] and provndes excellent approxnmatnons to results pro-
duced through more complicated analyses.

It should be noted that our earlier results regarding variation of E[T]
with district geometries apply unaltered in the context of (3.93). This is
because of the continued linear relationship between D and T, which is
augmented in (3.93) only by an additive constant, a term that does not affect
variational analyses of district geometries. Even when cruising travel speed
depends on direction of travel, i.e., when v, % v,, the addition of a constant
to the travel time will not affect the variations of travel times with district
designs. Most important, optimal designs remain unchanged.

3.7.3 Expected Travel Distances: P
The General Case

Our discussion, so far, has focused primarily on exact and approximate
expressions for expected travel distances and times to and from incidents in
districts with relatively regular (“fairly compact and fairly convex”) geome-
tries and uniform distribution of incidents over the districts. Although this
focus may appear, at first, to cover only a limited subset of the cases that one
may encounter, it turns out that, in practice, our results can be used as
“building blocks™ to obtain good approximations in a large number of cases
where incidents are not uniformly distributed and the district itself does not
have a nice rectangular (or circular, triangular, etc.) shape.

Before illustrating this, let us first discuss, in the abstract, the most general
possible cases. Let (X, Y)and (X,, Y,) indicate, respectively, the location of
calls for service and of the response unit in a district R of area A. Denote by
Trv.xorn (%, ¥, X1, »,) the joint pdf for random variables X, Y, X,, and Y,,
and by D = d[(X,, Y,), (X, Y)] the mathematical relationship for the dis-
tance between (X,, Y,) and (X, Y) [e.g.,, D = /(X, — X)* + (Y, — Y)*for
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Euclidean distances]. Then, for the expected travel distance in the district, we
have

E[D] = [[[[alCes, ), oo ) frrw (5, v, %0, 1) dxy dy, dx dy  (3.94)

over R

Note that the joint pdf for the coordinates of the incident and of the service
unit can be made to reflect not only nonuniformities in the distribution over
R but also possible dependencies between the locations of incidents and of
the service unit.

Expression (3.94) can be extended to the case where N response units are
located in district R. Now let (X,, Y)) indicate the location of the ith response
unit (/== 1,2,..., N)and (X, Y) the location of an incident. Then the dis-
tance between the incident and the closest response unit can be written

DN = Mln {d[(XU Yl), (X’ Y)]) O d[(XN’ YN)# (X5 Y)]}

Since Dy is then a function of the random variables X, Y, X, Y, X,,
..., Xy, Yy, we can write

EID,] = [ -+ [ Min {d[Cry, ), 06 90, - - o, 2y G DD} -

over R

fX,Y,A’.,Yl,...,XN,YN(xa y: xl’ yl’ ey XNy yN)dx dy SRR dyN (395)

where fy. v xivn....xnxn(X Vs X 15 - . ., Vy) isobviously the joint pdf for the coor-
dinates of the incident and the N response units. Thus, in both (3.94)and (3.95)
we have expressed expected travel distance as the expected value of a function
of random variables whose joint pdf is known. The problem of computing
the expected travel distance in the general case is, therefore, no more (or less)
difficult than working with any other function of these random variables (cf.
Section 3.1).1°

Obviously, in practice, there are severe limitations on how far one can go
in deriving such exact expressions for E[D]. Problems become mathematically
intractable as the number of random variables increases or as the shape of R
and/or the joint pdf for the random variables becomes more complex. In
many cases, however, all is not lost'as long as one is willing to settle for good
approximations rather than exact results. This is true any time the response
units-are stationary at known locations, no matter, what the number, N, of
these units is (and for practically any pdf for the spatial distribution of
incidents/demands as well as for any shape of the district of interest). It is
also true, for any value of N, in the case of mobile response units as long as

10This approach can also be generalized to expected distances to other than the closest
unit (e.g., to the kth closest unit).
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subdistricts of responsibility have been defined in such a way that each sub-
district of R is served exclusively by a very small number of mobile units
(preferably 11!). In such instances, the following three-step approach will
always work:

STEP 1: Divide the district R into several (possibly many) ndnoverlapping
'parts, which we shall call “zones.” Each zone must have the fol-
lowing two properties’

a. Its shape must be approximately rectangular, triangular,
circular, or any other easy-to-work-with configuration.

b. The pdf for the spatial distribution of incidents/demands
within each zone must be approximately uniform (or that pdf
can be approximated by some other sufficiently simple expres-
sion as to permit easy mathematical manipulation).

STEP 2: Using the techniques of this chapter, compute all intrazone and
zone-to-response unit expected distances, as required by the prob-
lem at hand.

STEP 3: Multiply the expected distances computed in Step 2 by appro-
priate probabilities to obtain overall expected travel distances for
district R.

Note that each zone in Step 1 can have an individual shape with its “own”
pdf for the distribution of incidents. Note also that the greater the degree of
accuracy desired, the larger the number of district zones should be (to
approximate better the shape of the district R and the pdf for the spatial dis-
tribution of incidents). In fact, the three-step approach outlined above is very
similar to the approach that a computer would follow in order to compute
numerically the integrals in expressions (3.94) and (3.95).

Rather than attempt a more formal statement of the above three-step
approach, we now illustrate it through the following example.

Example 14: Commuter Travel in a Suburban Town

Consider the suburban town shown in Figure 3.31. Its only access to the
central business district (CBD) of the metropolitan area of which this town
is a part is through the single bridge shown in Figurc 3.31. The CBD is 6 miles
from the bridge’s end, as shown. Travel in the town is right-angle, as shown.

We are interested here in the total number of person-miles traveled by the
town’s working residents (not including schoolchildren) each morning on
their way to work. (This information might be useful in transportation plan-
ning or in estimating transportation-related fuel consumption by commuters.)
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FIGURE 3.31 Configuration of a suburban city.

About 80 percent of the working residents work in the central city at the
CBD. The other 20 percent work in town (and do not have to cross the bridge
every morning). Trips are generated uniformly over the town at the rate of
about 2,000 trips per square mile. The only exception is the rectangular area
to the east of the 2.5-mile mark along the river (as shown in Figure 3.31),
where the density of trips generated per square mile decreases linearly accord-
ing to the function g(d) = 4,000(3 — d), where d is the east-west coordinate
(2.5 < d < 3) of each point as measured from the southwesternmost point of
the town (see Figure 3.31). There is no difference between the spatial distribu-
tions of trip origins to the CBD and to in-town jobs. That is, of every 100
trips generated at each part of the town, no matter where that part is located,
80, on the average, are to the CBD and 20 to in-town jobs.

The spatial distribution (and density per square mile) of in-town jobs is
assumed identical to the distribution (and density) of trip-generating points
for in-town jobs. (This may be the case, at least approximately, when there
are no concentrations of places of employment in a city and when no major
employers, such as factories, etc., are located there.) For the purposes of this
example, we shall also make the more questionable assumption that the job
and residence locations for in-town workers are statistically independent
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(i.e., that knowledge of where an in-town worker’s home is does not affect our
a priori knowledge of where in town he or she works, and vice versa).

Solution

In working on this problem, we shall first compute the expected travel distance
for CBD workers, then the expected travel distance for in-town workers, and
fin.lly the total passenger miles covered per day.

To start with, we need a coordinate system. Although our choice of origin
does not really make much difference in this case, the edge of the bridge on
the town’s side is a particularly convenient one. We thus relabel the various
points of interest according to this choice of origin, as shown in Figure 3.32a.
We can also, using the information given, construct the pdf for the spatial
distribution of trip-generation points.

Exercise 3.9 Show that this pdf is given by

& for—lgxgo,OgySZ.S.
B for0<x<150<y<L5
Srv(x,9) = 1802 —x) forl5<x<20<y<LS
0 otherwise

Note that fy, y(x, ) also represents the pdf for the spatial distribution of in-
town jobs according to the problem statement.
With these preliminaries we can now compute:

1. E[D] for CBD workers. Since the coordinates of the edge of the
bridge that travelers to the CBD must reach are (0, 0), the distance
from any point with coordinates (X, Y) to.the bridge is given by
D=|X|+]|Y]

Exercise 3.10 Show that if we define Z = | X | and W = | Y|, then f3(z) and
fw(w) are as shown in Figure 3.32b and c. Note that both pdf’s can be derived
almost by inspection by first obtaining fy(x) and fy(y) from fy y(x, y). In
doing so we use the geometrical probability interpretation of pdf’s (cf. Section
3.4.1).

It is now easy to obtain

EID] = EI X || + E Y || = E[Z] + EIW] = 1oq + 1o = 1.60

miles for the expected distance to point (0, 0).

2. E[D]for in-town workers. We now partition the town into four non-
overlapping zones, as shown in Figure 3.32d. We wish, in effect, to
compute E[D] between two random points in the town with the loca-
tions of each point determined independently, each according to the
pdf fx y(x, ). To do this we consider all possible intrazone and inter-
zone expected distances and then multiply each expected distance by
the appropriate probability.
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FIGURE 3.32 (a) Coordinates of corner points of suburban city ; (b) The pdf for
Z; (c) The pdf for W; (d) partitioning of the suburban city.
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For instance, it can be seen that, given an in-town worker:

2
P{both residence and place of work are in zone I} = (4%) = 1_66%‘T
E[D|both residence and place of work are in zone I] =  mile

Exercise 3.11 Show that if both the residence and the place of work of an
in-town worker are in zone IV, his or her conditional expected travel dis-
tance is equal to 43 mile.

Exercise 3.12 By carefully considering all residence and place-of-work com-
binations, show that for in-town workers, E[ D] =< 1.655 miles.

3. Total expected distance. A total of about 10,250 trips take place
every morning. Of those 80 percent (= 8,200) are to the CBD and
20 percent (= 2,050) are in-town. The expected travel distance to a
CBD trip is 7.60 miles [remember that point (0, 0) is 6 miles from the
CBD] while an in-town trip is 1.655 miles long on the average. There-
fore, the total expected distance traveled by workers each morning
is 65,755 person-miles.

It should be clear that the problem of determining E[ D] for CBD workers
was equivalent to computing E[D] between an incident distributed as
Sfx,y(x, y) in the city and a fixed service unit located at the CBD. Similarly,
E[D] for in-town workers is equivalent to the expected travel distance between
an incident spatially distributed as fy, y(x, y) in the town and a mobile
response unit with that same distribution for its location in the town.

Finally, we might, out of curiosity, wish to compare the result of Exercise
3.12 for the expected travel distance for in-town workers with the result that
we would have obtained had we used the approximate expression (3.84) with
¢ = 0.67 (Table 3-1), disregarding the fact that the shape of the town of
interest is not quite “fairly compact and fairly convex” and that in a part of
the town the distributions of demand and of the “service unit” (i.e., of the job
locations) are not uniform. Since the area of the town is 5.5 square miles, we
have E[D] =~ 0.67+/5.5 = 1.57 miles, for an error of about 5 percent! The
reader who worked through Exercises 3.10-3.12 to obtain the exact result

of 1.655 will definitely appreciate now the value of approximate expression
(3.84).

3.8 SPATIAL POISSON PROCESSES
3.8.1 Description and Postulates

Suppose that we have entities distributed around the city in a completely
random manner. These entities could be employees of a particular service
system, recipients of a certain social service, emergency response units, crimes,
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and so on. We require a way of describing probabilistically the numbers of
entities in given subareas and spatial interrelationships among entities. To do
this, we generalize the idea of a Poisson process in time to a Poisson process
in space.

We recall from Chapter 2 that for a homogeneous Poisson process in

time, the probability that exactly k Poisson events occur in a fixed time
interval [0, ¢] is

P{X(t)zk}z(—;‘% fort>0,k=0,1,2,...

where 1 is a positive constant interpreted as the average rate at which évents
are happening per unit time. The process is called “homogeneous,” because
A does not vary with time.

Applying the same ideas in a spatial setting, first consider a homogeneous
highway segment of length / miles. From past accident records we may know
that each year an average of A highway accidents occur per mile on this type
of highway. Then the number of highway accidents that occur in the segment
of length / miles can be modeled as a Poisson random variable with mean A/.
Here the parameter distance (/) plays a role directly analogous to time (¢).
For the Poisson model to be a reasonable one, the locations of accidents
must occur consistent with Poisson-type assumptions: (1) only nonnegative
integer numbers of accidents can occur in any length of highway; (2) the
probability distribution of the number of accidents depends only on the
length of highway considered, and as this length goes to zero so does the prob-
ability of an accident occurring there; (3) the numbers of accidents occurring
in nonoverlapping segments of highway are mutually independent random
variables; and (4) given that an accident occurs at a particular location, the
chance of a second accident occurring at the identically same location is
zero. Assumptions (1) and (3) appear fairly reasonable for most highways.
Since different parts of a highway (e.g., curves versus straight-aways) can be
associated with different risks of accident, the first part of assumption (2)
may have to be modified in practice to allow for a spatially varying (non-
homogeneous) Poisson process, with accompanying A(x) defined so that
A(x) dx = probability of an accident occurring (during a year) in the road
interval x to x -+ dx. A highway with overpasses, bridges, and other dis-
cernible high-risk points may yield a positive probability of at least one
accident during a year at these points (e.g., at the base of an overpass),
thereby negating the second part of assumption (2). Such high-risk points
would also tend to negate assumption (4), which also might be invalidated
by chain-reaction multiple-car accidents (such as those that occasionally
occur in fog) if those are counted in accident data as more than one accident.

In practice, almost any real system will demonstrate a nonperfect degree
of conformity with the postulates of the Poisson process. In assessing the
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applicability of the Poisson model, the modeler must weigh the benefits of
applying the Poisson model (together with the insights it provides) against
the cost of inaccuracies introduced by such a simple model and the cost of
constructing a more complex model. Sometimes a forced degree of ignorance
involving details of a system (e.g., the locations of overpasses) will facilitate
app]icatiqn of the model.

The ideas illustrated above for a Poisson process on a lirie (a highway)
extend directly to the plane (to describe entities distributed over two dimen-
sions). Let the parameter S denote a bounded region of the plane (or
higher-dimensional space, for that matter). Let X(S) be the number of
entities contained in S. Then X(S) is a homogeneous spatial Poisson process
if it obeys the Poisson postulates, yielding a probability distribution

P{X(S) = k}

:M%ﬁ—e_—“ﬂ for A(S)>0, k=0,1,2,... (3.96)

In this case A is a positive constant called the intensity parameter of the
process and A(S) represents the area or volume of S, depending on whether
S is a region in the plane or higher-dimensional space.

The underlying mathematical postulates of the model follow directly
those of the time Poisson process:

1. Only nonnegative integer values are assumed by X(S) and 0 <
P{X(S) > 0} < 1 if A(S) > 0.

2. The probability distribution of X(S) depends on .S only through the
value of A(S) with the further property that if A(S)— 0, then
P{X(S)> 1} — 0.

3. IfS,,S,,...,S,(n=>1)aredisjoint regions, then X (S, )s = 505 X(S,)

are mutually independent random variables and X(S, U ... U Sy

= X(S,) + ...+ X(S).

. PX(S) =1}
lim 2= = - =],

A(;')rgo P{X(S) = 1}

»

Generalization: As with the time Poisson process, it is not difficult to exte.nd
these ideas to a spatially varying (nonhomogeneous) Poisson process. For in-
stance, in the plane if

A(x, y) dx dy = P{a Poisson entity is located in the interval x to x -+ dx, y
to y - dy}

then in (3.96), 1A4(S) is replaced by

j J A, y) dy dx = A(S) (3.97)

N
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In this case postulate (2) is changed to read: “The probability distribution of 5. The pdf is
X(S) depends on S only through the value of A(.S) with the further property that | ’ P
as A(S) — 0, then P(X(S) > 1} — 0.” folr) = FD(r) = 2ryme~r  r>0 (3.100)

3.8.2 Time-Space Poisson Process o
This is a Rayleigh pdf with parameter o/2p7. Thus, the mean and variance
“Suppose-that-in.some.region of space S with area A(S) events occur-in ars
time.as.a-Poisson-process.with rate A#4(S)-per-unit-time. Then utilizing the ! E[ D] = /7 (3.101a)
foregoing ideas about multidimensional Poisson processes, the probability

e . 1
that & events occur in S in time 7 is o} = (2 — %)m (3.101b)

Question: How could you extend these ideas to obtain other interesting
properties of the system?

P{X(S,t):k}:w—“’(:‘"%'}‘w fork=0,1,2,... (3.98)

Eroblent 2,26 Apphs Tus conccpr Example 16: Nearest Neighbor with Right-Angle T ravel Distance

Zetniple 855 DeukBution el Jrkyel-SHqonte | Cyedrest NERRSErT) If travel distance is right-angle, rather than Euclidean, the analysis in Example

15 follows straight through, except instead of a circle of radius r we have a
square rotated at 45°, centered at (x, y), with area equal to 2r2, Following the
! same steps in the solution,

Suppose that emergency response units are distributed throughout a large
region as a two-dimensional Poisson process with intensity parameter  units
per square mile. We wish to know the pdf of the travel distance D between an
incident, whose position is selected independently of response unit positions,

'v (2 ’-Z)k —2yprt .
and the nearest response unit. Assume Euclidean travel distance. (This is ’3 P{X(square) = k} = —L—‘—k! k=012,...
sometimes known as a ‘“nearest-neighbor” problem; in three-dimensional "
2 : SN : =1 — e 2 3.102
space this problem has been used to determine the distribution of distance { Fp(r)=1—e*% r=0 ( )

between stars in a galaxy.) fulr) = FD(r) p— F=0 (3.103)

Solution

This is a Rayleigh pdf with parameter +/#y. The mean and variance are
We use the never-fail cumulative distribution method in conjunction with our

new knowledge of spatial Poisson processes.

E[D] = — 2;‘ . (3.104a)
1. Assume the incident occurs at some arbitrary point (x, y). i
: ; o} = (2 - 5% (3.104b)
2. Construct a circle of radius r about (x, y). : 2 )4y
¥ ;ri}::lepirs()bablllty 164 Sbecsiaro sxaslly f rspariss HANS Wil e Question: In Example 4 in this chapter we derived that in an isotropic
environment a response unit traveling according to the right- angle dis-
P{X(circle) =k} = @mr2ye k=012 tance metric travels 4/ = 1.273 times farthcr (on the average) than a

kt unit traveling “as the crow flies.” Thus, one might be tempted to think

% that the ratio of the mean right-angle to Euclidean distances computed in
Examples 15 and 16 would be 1.273. In fact, the ratio is /T2 < 4/m.
Why ?

4. Therefore, we obtain the cdf by the following reasoning:

Fp(r)=P(D<r}=1—P(D>r}=1 — P{X(circle) = 0}
or Hint: See Problems 3.9 and 3.10.

By =1—em  r20 (5 Further work: Problems 3.25 and 3.26.



3.8.3 Application to Facility Location
and Districting

One could apply the ideas of spatial Poisson processes to a problem of
facility location and districting of a city. Suppose that demands are dis-
tributed uniformly throughout the plane and suppose that travel distance is
right-angle. We can consider two applications: (1) for each service request, a
response unit is dispatched from the nearest facility (the service system need
not be an emergency service; for instance, it could be a social service agency
whose personnel make home visits); and (2) the individual requiring service
travels to the nearest facility (e.g., hospital, library, “little city hall,” police
district station house). Each district about a facility would consist of all
points closer to that facility than to any other.

As an agency administrator, you want to get some idea of the potential
benefits (in terms of mean travel distance reduction) of a study to optimally
locate service facilities.

Use of Poisson model to generate “upper bound.” At one extreme, you
could ask: What are the response distance characteristics of the system if
facilities are distributed aft random? We can answer this question by assuming
that facilities are distributed as a homogeneous spatial Poisson process. This
corresponds to a totally unplanned system (in terms of districting) in which
the facility locations could be viewed as occurring from “throwing darts
blindfolded” at a map of the city. That is, given n facilities in any particular
region, their locations would be independently, uniformly distributed over
the region (following the “unordered arrival times” argument of Chapter 2
for a time Poisson process).

For a right-angle distance metric, a random distribution of facilities may
yield a city-wide districting as shown in Figure 3.33. Using the result of
Example 16, the mean travel distance is

E[D] — %«/2?_" ~ 0.627y-"2 (3.105)

where y is the average density of facilities.

Lower bound. To achieve minimal mean travel distance, the facilities should
be positioned in a regular lattice, as shown in Figure 3.34. This makes
intuitive sense since a diamond gives the set of points within a given dis-
tance of its center, when fight-angle distancelis used (analogous to a circle
for Euclidean distance), so diamonds can be used to partition a city intg
districts of equal coverage, ‘\yherETcoveragefo a district is measured by
_maximum possible distance from its facility. 3
“We prove the desired result regarding E[D] in two steps:
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F; = location of facility i

FIGURE 3.33 lllustrative districting with a random positioning of
facilities.

FIGURE 3.34 Regular lattice of optimal facility locations and districts.

STEP 1: Given that a facility’s district must contain an area 4, a square
district rotated at 45°, centered at the facility’s position, results in
minimum mean travel distance (E[D]).

Proof: (Contradiction, using perturbation method.) Suppose there is some
redesign of the rotated square that results in lower mean travel distance.
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Then the new district can be constructed by taking a set of points B, of area
€ out of the rotated square and adding a set of points B, of area ¢ from out-

si_de t.he square. The situation is shown in Figure 3.35. Then, in the redesigned
district, the new mean travel distance is

ED') = E[D] — E[D|B,] + <-E[D|B;]

or

E[D'] — E[D] = Z(E[D|B,] — E[D|B,))
But

ED|B]< /4

E[D|B > /4

so E[D'] — E[D] > 0, which is a contradiction.

A2

Area e

FIGURE 3.35 Exchange of subregions of area ¢.

STEP 2: Given that we have N square districts, each rotated at 45° and

centered at the respective facility’s position, and given that the
tptal area of the N districts must equal N4, minimal mean travel
time is obtained by setting the area of each district equal to 4.

Proof:‘ For a fandom service request located in one of the N districts,
assuming that district / has area A4,, the mean travel distance is

_ X4, 2 /4,
E[D] = > N—;?\/j (3.106)
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(Why?) The idea is to minimize (3.106) subject to the total area constraint,
>, A, = NA. This is a straightforward problem of constrained optimiza-
tion. Using Lagrange multipliers, one finds that the minimal E[D] is found
by setting 4, = A (all ). Finally (and fortunately!), equal-sized square dis-
tricts rotated at 45° fit into the lattice shown in Figure 3.34. For this lattice

)

E[D] = %\/ .21; ~ 0.472p-172 (3.107)

Comparing this to the mean travel distance with randomly positioned
facilities, we have the somewhat surprising result that optimal positioning
(and districting) reduces mean travel distance over that obtained by random
positioning by only about 25 percent.

What are the policy implications of this result?

3.9 ALTERNATIVE SPATIAL PROCESSES

The spatial Poisson process has a “no memory” property similar to that of
the time Poisson process. In this case, the existence or nonexistence of a
Poisson entity in any region of space does not influence the likelihood of
other Poisson entities existing in nearby disjoint regions. Moreover if we know
that there are n points distributed in a fixed region of area 4 and that these
points were generated from a spatial Poisson process, then the n points are
independently uniformly distributed over the region. This is simply the two-
dimensional generalization of the “unordered arrival times” argument made
in Chapter 2 for Poisson processes in time.

However, many naturally occurring processes do not adhere to the
Poisson assumptions. For instance, one can imagine certain processes for
which the existence of one point would increase the likelihood of other
points occurring nearby. Such “clustering” processes could include hospitals
(which cluster due to economies of scale), certain industries, police cars,
crimes, households having certain demographic characteristics, and so on.
For these processes the spatial Poisson process is an inadequate model.
Similarly, one can imagine other processes for which the existence of one
point would decrease the likelihood of other points occurring nearby. Such
“spread” processes could include certain retail establishments (e.g., super-
markets, hamburger havens), urban service facilities (e.g., libraries, out-
patient clinics, “little city halls”), and street intersections.

" The question is, how do we model such processes ? The answer, at present,
is that models for such complicated spatially dependent processes are quite
inadequate. While we can quite successfully generalize from Poisson processes
to renewal processes in time, there does not seem to be an analogous gener-
alization for spatial processes. Still, urban geographers have devised various
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techniques for tackling this problem, and here we illustrate a popular
one based on partitioning the city into a regular lattice of equal size small
cells.
Suppose that we are interested in the number of points N in a particular
cell of unit area. If the points are distributed according to a spatial Poisson
- process with parameter y (points/unit area), then

PN=K =L k=012,

E[N]=y

2
Oy =7

In particular, we focus on the ratio of the variance to the mean,

po= EG[}ZVV] (3.108)

For a spatial Poisson process, r = 1. Now, for a “spread” process in which
the existence of one point reduces the chance of another point being located
nearby, assuming that means are kept constant, one would expect that the
Poisson distribution could be modified in a way that would take probabilities
away from the tails of the Poisson distribution and add these to probabilities
near the mean (center) of the distribution. Such a modification would have
the effect of reducing the variance of the distribution. Thus, any spatial
process for which

2
g
s N

~ E[N]

<1

is called a spread process (meaning points tend to be “spread out” over the
plane). An extreme case occurs with a perfectly regular lattice of points
which provides each geographical cell with exactly the same number of
points; then o} = 0, so that r = 0. A spread process, sometimes also called
regular process, because of its closeness to a regular lattice, includes the class
of processes ranging from a perfect lattice of points to (but not including)
the Poisson process.

A clustered process, on the other hand, would probably have many cells
with zero points and others with more than predicted by the Poisson model.
Thus, again keeping means constant, one could obtain a pmf for a clustered
process by taking probability away from the integer values near the mean of
the Poisson process and adding this to values at or near zero and to values
in the positive tail of the distribution. This would have the effect of increasing
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the variance of the distribution. Thus, any spatial process for which

_ _O%
r—E[N]>1

is called a clustered process. As one extreme, a perfectly clustered process
would have all cells but one empty and that cell would contain a number of
points totaling E[N]-(the number of cells).

As a simple example of such spatial processes, consider a process for

which a cell has probability (1 — p) of containing zero points and a prob-
ability p of containing M points. Then,

E[N]=p-M (3.109a)
ok = M?p(1 — p) (3.109b)

so that
r= M(l — p) (3.110)

Here r > 1if M is “sufficiently large” or if p is “sufficiently small.” Formally,
r > 1 and thus we have a clustered process if M > 1/(1 — p) or, equivalently,
if p < (1 — 1/M). Interestingly, if these inequalities are reversed, we have a
spread process rather than a clustered process. This makes sense since in the
extreme if p = 1, each cell contains exactly M = E[N] points. If the inequali-
ties were strict equalities, we would have a two-valued process whose spatial
randomness (as measured by r) is identical to that of the Poisson process.

3.9.1 Spread Process Yielding
the Binomial PMF

Rogers has studied two particular processes—one spread and one clus-
tered—that have appealing time-Poisson process interpretations and that
have been found useful in analyzing the locations of retail trade [ROGE 74].
We consider first Rogers’s spread process, the binomial process. Imagine that
entities énter the cell of interest over some time interval [0, 7], initially with O
entities in the cell. We are interested in the number of entities at time #, N(z).
Being a spread process, each time that another entity enters the cell the rate
at which new entities enter the cell diminishes. Thus, suppose initially that
entities enter the cell as a time-Poisson process at rate ¢ per unit time. Then,
after the first enters the cell, the cell becomes “less attractive,” so the new
Poisson arrival rate is ¢ — b. In general, after k arrivals, the Poisson arrival
rate is reduced to ¢ — kb. Thus, the cell becomes less attractive in a linear
manner with the number of entities already in the cell. We assume that ¢/b is
integer, so that there exists some maximum k, kn.. = ¢/b, at which the
Poisson arrival rate is reduced to ¢ — k.0 = 0. Thus, the maximum number



158  Functions of Random Variables and Geometrical Probability Ch. 3

of entities in a cell is k,,, = ¢/b. This pure birth process is characterized by
the state-transition diagram shown in Figure 3.36.

Proceeding as in Chapter 2 for the Poisson process, this process is
governed by the following set of coupled differential equations:

LD — —cpr)

s (3.111a)
dP
Pua) D _ (¢ — mb)Po(t) — [c — (m + 1)bIP, (1)
m=0,1,2,...,%—1 (3.111b)
c c=b =20 c~(k-1)b c—kb c“(g_l)b

FIGURE 3.36 State-transition diagram for the binomial spread process.
Proceeding as with the Poisson process, we find that
Py(t) = e~ t>0

Successive substitutions into (3.111) for increasing values of m leads us to
prove by induction that

m=20,1,2,..

P (1) = (c/b>(1 — e brym(ebryle/t) - m
t=>0

m

This is the binomial pmf with probability of “success” equal to (1 — e=%).
The mean and variance are

E[N()] = (1 — ™) (3.113a)
Tho = 5 (1 — e)e (3.113d)
The ratio of the variance to the mean is

r=e (3.114)

which is always less than unity (which is what we want with a spread process).

While the “diminishing attractiveness” interpretation of this birth process
is perfectly valid, and quite appealing as a description of the dynamics of a
spread process, it is not the only interpretation of the process. Alternatively,

£
B (3.112)
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one might imagine a population fixed with n = ¢/b individuals. Each one
will eventually locate within the cell, but the time until such location is an
exponentially distributed random variable with mean 1/b. All n such random
variables are mutually independent. Thus, at time ¢t = 0, n “Poisson genera-
tors” are turned on, yielding a rate of transition nb from state 0 to 1; after
the first transition, (n — 1) Poisson generators remain turned on with a net
rate of occurrence equal to (n — 1)b. This “fixed population” interpretation
of cell occupancy also yields the binomial distribution, and it could imply
markedly different policy decisions in practice than the “diminishing attrac-
tiveness” interpretation. The two equally plausible interpretations provide a
good example that any particular probability law may have two, three, or
even a greater number of plausible underlying explanations. Thus, just
because a probability law assumes a particular form does not assure us that
one underlying causal model is the model explaining the process dynamics.

3.9.2 Clustered Process Yielding
the Negative Binomial PMF

Rogers’s clustered spatial process gives rise to the negative binomial dis-
tribution. In this model we assume that a cell becomes more attractive with
each additional entity that locates there. In particular, if there are m entities
there at time ¢, new entities arrive in a (time) Poisson manner at rate ¢ + bm
(¢ > 0, b > 0). The state-transition diagram for this infinite-state pure birth
process is shown in Figure 3.37. Proceeding as usual, the set of coupled differ-
ential equations governing this process are

dP(®) _ _ .p.1) (3.115a)
dr
P @) _ (¢ 4 mb)Po1) — [e + (n + DbIPpr()  m=0,1,2,...
(3.115b)
c ctb ct2b ct(h—1)b ct+kbd ctm=1)b c+nb

FIGURE 3.37 State-transition diagram for the negative binomial cluster process.

Again we find that
Py(t) = e~ t>0

Successive substitutions into (3.115) lead us to prove by induction that

.
{Lam—1 e Mm@ L2 ..,
P,,,(t)~<b ; )(l—e”)(e”)”’ i (3.116)
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This is the negative binomial pmf!! with mean

E[N@®)] = —Z—(eb' — 13 (3.117)

and variance
oi(t) = %(e”‘ — e* (3.118)

The ratio of the mean to the variance is

r=e” (3.119)

which is always greater than unity (which i i
s wh

o y ( is what we want with a clustered

Al;hough the “incr.easing attractiveness” interpretation of this process is
appealing for a clustering process, there are other plausible system dynamics
yielding the same negative binomial pmf.

}I:or comparative purposes, we have sketched the mean value E[N(¢)] for
eac of thg three cell occupancy laws—Poisson, binomial, negative bino-
mial—in Figure 3.38. Note that the binomial (spread) process reaches a

E[N(
( )w Negative binomial

process (exponential
growth)

Poisson process
(linear growth)

PSAT

Binomial process
(exponential convergence
to a saturation value)

-

0

Time
FIGURE 3.3'8 Mean value £[N(t)] for each of three processes. Model parameters
have been adjusted so that all three means are equal at time ¢.

11See, for example, A. W. Drake, Fundamentals 1 ili
] _ 3 * e ] A e i
e Mo Yok 1067, mp: T2 130, 165 of Applied Probability, McGraw-Hill,
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“saturation” population, Py, whereas the Poisson process grows linearly in
time and the negative binomial (clustered) process “explodes” at an expo-
nential rate. Figure 3.39 illustrates each process over a 10- by 10-kilometer
city.

0" 10

ol o 0 10
@ (®) t

FIGURE 3.39 lllustrated examples of (a) Poisson, (b) binomial (spread) and (c) negative
binomial (clustered) processes. Means normalized to 1 point per unit area.

310 CONCLUSION

We have now completed our tour of derived distributions, geometrical prob-
ability, and spatial processes. For those interested in further study of geomet-
rical probability, we recommend the recent book by Solomon [SOLO 78].
Chapter 4 switches emphasis from space to time, dealing with congestion that
arises in queueing systems. Later chapters rely heavily on the probabilistic
modeling methods of Chapter 2, this chapter, and Chapter 4, to study con-
gestion phenomena in a spatially oriented urban setting.
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Problems

3.1 Review: basic concepts of probability modeling A certain town has exactly one
policeman (Jones) and exactly one burglar (Elmer). The town is divided into two
police beats, each of which may be considered a straight line of length €. Each night
the policeman makes an equally likely choice between the two beats and then spends
the whole night patrolling the selected beat. When Jones is on a beat, his position at
any time is uniformly distributed over the length of that beat.

Tonight, Elmer will start committing one burglary per night until he is appre-
hended. On any particular night, given that he has not already been caught, Elmer
is twice as likely to burglarize the beat that Jones is not patrolling than the one that
he is patrolling.

Elmer’s burglary position is uniformly distributed over the beat that he has
selected and is independent of Jones’s position, even if he and Jones happen to have
selected the same beat. Assume that Jones’s position remains constant throughout
the duration of the burglary.

Given that Elmer and Jones are exactly w units of length apart on the same beat
at the time of burglary, Jones will apprehend Elmer with probability P{4|w}, as
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shown in Figure P3.1. Note that P{4 | w}isa conditional probability, not a probability
density function.

w

P{Alw}={l—7 OSWSd}wimo<d<c
0

elsewhere

P{Alw}

a. What is the probability that Elmer and Jones will both work on the same
beat tonight?

b. Given that Elmer and Jones are on the same beat tonight, and also givcn
that they are separated by a distance of more than /4 units, what is the
conditional probability that they are separated by a distance of more than
£/2 units?

c. Given that Elmer and Jones are on the same beat tonight, determi.ne the
pdf fw(w) for —co <w < oo, where W is the magnitude of the distance
between them at the time of the burglary.

d.  Given that Elmer has not as yet been caught and given that tonigtx‘t'he and
Jones choose the same beat, show that P, the conditional probability that
he will be apprehended tonight, is (d/O)[t — 4(d/6)]. Does this answer seem
reasonable for d = 0 and d = {?

e. Determine the probability that Elmer is apprehended for the first time on
the third night.

f  Given that Elmer has successfully completed exactly 10 burglaries, what is
the probability that Jones and Elmer worked the same beats exactly three
of those nights?

g. Jones is considering a new patrol strategy. He v.vill still choose'h‘ns beat
randomly as before, but he will now simply stand in the center of it instead
of patrolling it. If everything else remains th.e' same (and Elme.r does not
change his strategy), what now is the probability of apprehension on any
given night if Elmer has not previously been caught? Does your answer
seem reasonable for d = 0 and d = {?

3.2 Discrete random variable. Let X, (i =1, 2) be uniformly, independently dis-
tributed over the integers 0,1,2,..., m. Define the distance between X, and X as

D=lX| —‘XZI
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a. Determine the pmf for D.

b. Show that E[D] = +-m + %(mLH)

3.3 Functions of random variables. Two emergency response units patrol uniformly
and independently a 10-mile stretch of road. An emergency incident occurs on the
roadway and its position is uniformly distributed, independent of the positions of
the response units. The incident requires both response units to be dispatched to the
scene. Call the two units unit @ and unit 5. Assume that response speed is fixed at

10 mph and that U-turns are permitted.
Determine the mean travel time for unit a to reach the scene.,
Determine the mean time until the first unit (either a or b) reaches the scene.

. Determine the probability density function for the time until the second
unit reaches the scene.

3.4 Functions of random variables. Assume that the locations of an incident and a
response unit are independently, uniformly distributed over a rectangle with dimen-
sions Xy, Y, (see Exercise 3.1). The sides of the rectangle are defined parallel to

directions of travel. If the incident and response unit locations are (JX;, ¥;) and
(X,, Y3), respectively, the travel distance is

D=IX1"X2|+|Y1—YH

For the case X, = Yy, find the pdf of D.

b. For the case X, > Y,, identify the different regions of integration in the
X, Y sample space that yield different functional forms for the pdf of D,

c.  (Optional) For the very brave, carry out the computations for part (b) to
find the pdf of D when X, > Y,.

3.5 Time, speed, distance. Suppose that ambulance attendants read the following
data for four random ambulance responses:

Number of
Miles Speed of Travel
Driven Response (miles[hr) Time (minutes)
1.2 10 72
6.0 18 20
0.2 1 12
13.0 21 37.1

a. Verify that the average distance per response = d,, = 5.1 miles, the

average speed per response = S,, = 12.5 miles/hr, and the average time
per response = f,, = 19.1 minutes.
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b. Intuitively, explain why (d,,/S.y)- (60 minutes/hr) = 24.48 minutes is great-
er than 7,, = 19.1 minutes.

c. If we compute a weighted average speed .Sy, where the weights sum to 1
and are proportional to the times driven at each speed, we find S,,, = 16.03
miles/hr. We find that (d,,/Sy:)+ (60 minutes/hr) = #,, = 19.1 minutes. Why
is this a correct procedure?

3.6 AVL .ystems. 1f the travel distance metric of the vehicles being logated by an
AVL system is right angle, the travdl distance between the vehicle’s.estlmated. and
true positions is | X,| + | Y,|. Here X, and Y, are zero mean, vana_nce gz, inde-
pendent Gaussian random variables representing x- and y-locat.ion estimation error,
respectively, as described in Exercise 3.2. Making the necessary isotropy assumption,
argue that

—od [T, |2
EIX.|+| ¥ =0k [ 20, [2

Thus, the expected value of a Gaussian ran@ variable with variance o2 which
is truncated at zero is E[| X,|] = E[| Y.[] = o/2/x.

3.7 AVL systems. Suppose that the individual x and y errors of an AVL system
are independently distributed according to a Laplace pdf,

Sx (%) = fr (x) = -%*e‘“”' —o<x< 4o, A>0

Suppose that the radius of error is measured directly in terms of right-angle distance,

R=|X,|+|Y.|
Show that
falr) = rd2e=*  r>0 (%)
and thus
E[R] = —/21—

[You might try obtaining (*) using both the “never-fail” method and the “infini-
tesimal method” outlined in Example 3.]

3.8 Test of the “right-angle” distance metric, revisited In Example 4 we obtained

the probability law for the random variable R, the ratio of the right-angle and
Euclidean distances. In particular, we found

E[R] = % a 1273

Derive these results directly without first obtaining Fg(-) or fx(+).
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3.9‘ Flmction‘s of random variables (derived distributions) Consider a square service
region of unit area in which travel is right-angle and directions of travel are parallel

to the sid.es of the square. Let (X,, Y) be the location of a mobile unit and (X,, Y,)
the location of a demand for service. The travel distance is

D=Dp,+D,
where

Dx=[X,—X2| and Dy=|Y1—Y2l

We assume that the two locations are independent and uniformly distributed over
the square.

a.  Show that the joint pdf for D, and D, is
fD:.Dv(xay)= {4(1 —x)(l _y) OSXSI’ OS)’gl
Y otherwise

b. Define R,, = D,/D,. Show that the pdf for R,, is

2l r 0<r<i
S / &
Sar) = 32 3

1
3r2_w 1Sr<00

3.10 Ratio of right-angle and Euclidean travel distances 1In this problem we test the
reasonableness of the isotropy assumption used in Example 4. Tt is appropriate to
question this assumption since most service regions in a city are such that ¥ will not
be uniformly distributed between 0 and m/2. We consider three cases.

a. Case l. For the square service region of Problem 3.9, in which directions
of travel are parallel to the sides of the square, one might expect intuitively
that E[R] > 4/ ~ 1.273. Why? Show that E[R] = }[5log(1 + A2)
+ 42 — 2]~ 1.274.

Hint: 1In terms of Problem 3.9, recognize that

_1+R,
/1 + RZ,

b. Case 2. Suppose that the square-unit-area service area of part (a) is
ro‘tated at a 45° angle to the directions of travel. In such a case intuition
might lead one to think that E[R] would be less than 4/r. Why? To
investigate this conjecture it is helpful to use the relationship

X0 =22l + 131 = 32l = /2 Max|x] — x5, |, — 2411

where the primed variables are defined relative to a coordinate system
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rotated at 45° with respect to the original coordinate system. Show that in
such a case

E[R] =4{4./Zlog (1 + /2) +2,/2 — 4] = 1271

(Intuition is correct but the result is closer to 4/7 than might otherwise have
been eipected.)

c. Case 3. Suppose that the mobile unit is located uniformly on the perim-
eter of a square rotated at 45° to the directions of travel. Suppose that the
unit travels in a shortest (right-angle) distance manner to the center of the
square. Again, W is the angle at which the directions of travel are rotated
with respect to the straight line connecting the unit’s initial position to the
center of the square. Show that

i Fe(y) =41 +tan(y — m/4)], 0 < y < 7/2.
i. FR(r)=1—i-2—rf—’—2, 1<r<./2.
iii.  E[R] = /7 log (1 + /2) ~ 1.246.

Do all the results for E[R] check with your intuition ?
3.11 Quantization model (continued) In Example 5 we described a quantization
model for odometer readings. We stated that [(3.31)]
E[K] = E[D]
ok >0}
Prove these results. What implications do these results have for an actual data-

gathering experiment ?

Hint: Do not work directly with (3.30); instead, demonstrate the validity of the
desired results for any { D = d} and then integrate over all d.

3.12 Truncated times Assume that an activity commences at time 7 and termin-
ates at time T,. The exact duration of the activity is T, — T, = T. Now assume that
times are recorded by some mechanism that records time x as | x -+ &, for some
fixed a. Using this mechanism, the recorded duration of the activity is | 75 + o

— LTy + o).

a. Argue why it is reasonable to apply the distance quantization model
(Example 5) to this situation, with the following correspondences:

D: Tz"‘TlET
@: T|"+‘a — LT[ '|‘a_] =0
K: |T,+o]—|Ty+a]l=J

b. Show thatJ = | T + @.
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3.13 Zero-demand zone Consider a unit-square response area, as shown in Figure
P3.13(a). We assume that a response unit and incident (i.e., requests for service) are
distributed uniformly, independently over that part of the unit square not contained
within the central square having area a2. Travel occurs according to the right-angle
metric, and travel is allowed through the zero-demand zone. We want to use condi-
tioning arguments to derive the expected travel distance ¥(a) to a random incident.

Let (X,, Y,) and (X;, Y;) denote the locations of the response unit and incident,
respectively. Let S (S”) denote the set of points within (outside) the central square.
Let A = {(X], Yl) € S} and B = {(Xz, Yz) (=] S}

|

7
///-a

(a) ¢ (b)

Now focus on a unit square on which incidents and the response unit are uni-

formly, independently distributed over the entire square, yielding an expected travel
distance E[D].

a. Show that

E[D]) =% = E[D|A N BIP{A N B} -+ 2E[D|4 N B]P{A N B}
+ E[D|A’ N B|P{A’ N B’}
= 2a(a?)? + 2E[D| A N Ba*(1 — a?) + E[D| A’ N B](1 — a?)?

b. We wish to derive E[D| A’ N B’] = W(a). The relationship above allows us
to compute this quantity by finding the easier-to-compute quantity
E[D|A N B’].(Note the similarity of approach to Crofton’s method.)

1 To find E[D|A N B’], argue that one need only consider the incident
to be located in R, or R,, as shown in Figure P3.13(b).

ii.  Show that
2
P{(X,,Y,) € R |(X,,Y,) € Ry U R} = a.__g_l.
iii. Show that
E[D|A N Ry] =%+—lzfa
EID|ANR)=}+4a
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c. Finally, find W(a). As a check, W(0) = %, W(1) = t}. (Why?)

3.14 Square barrier Suppose that the conditions of Problem 3.13 apply, excgpt
that in addition, no travel is allowed through the central square. We wish to derive

V¥ (a) = expected travel distance to a random incident
We use perturbation arguments to write
W'(a) = W(a) + Wla)

where W(a) is the mean travel distance from Problem 3.13 and Wy(a) is the mean
extra (perturbation) distance due to the barrier.

a. Show that the probability that the perturbation term is strictly positive is

)

b. Show that the conditional extra travel distance, given that the perturbation
term is positive, is Ja. Thus,

) 1 a 2
Wata) = 5 o{z5)
As a check, verify the reasonableness of the result W’(1) = 1.

3.15 Rectangular grid of two-way streets " Consider an n X m regtangular grid of
two-way streets running north-south and east-west as shown In ‘Flgure P3.15.
Assume that incident positions are distributed uniformly over'the grid. A response
unit patrols the grid in a uniform manner. The incident location and the response
unit location are independent. Let

D = travel distance between the response unit and the in(‘:ident,
assuming the unit follows a shortest path that remains on
the streets of the grid

"]

L

21 |
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a. (Optional) By carefully and patiently conditioning on the various possible
locations for the incident and response unit, show that

4dn(m + V)m(n + 1)
n 4+ 1)m + (m + 1)n]?

EID) = (1 + m) + 35
b. Show that
I 4 m) < E[D] < 4(n +m + 1)

where the left-hand inequality becomes an equality when n or m is zero
and the right-hand inequality becomes an equality when n = m. Thus, the

continuous approximation, (3.12a), is never in error by more than § block
length.

3.16 Perturbation variables: one-way streets Consider a very large grid of equally
spaced one-way streets, with the direction of travel alternating from street to adja-
cent parallel streét. Assume that the positions of the response unit and the incident
are independent and uniformly distributed over the grid. It is assumed that the
response distance -from the response unit to the incident is a shortest path that
remains on the streets of the grid and obeys the one-way constraints. Use perturba-
tion variables to demonstrate that the mean extra distance traveled to the incident,
due to the one-way travel constraints, is rwo blocks.

3.17 Cauchy random variable We recall from Section 3.3.3 that random variable
X; has a Cauchy pdf if

1

Sxy) = )

—o <y <+

a. Suppose that S, = X, + X,, where X, and X, are independent Cauchy
random variables, each having pdf fy (.). Using the integral identity

1, dw _ (m)(n + 1) 1
") (L +wdn? +(y —w?} n Y+ (n + 1)

show that S, has a pdf 2/[n(4 + y?)].

b. Proceeding by induction, show that

S, =X, + X, + ...+ X, (all X;independent)

has a pdf n/[n(n* + y2)].

¢. Thus, verify that the average of n independent Cauchy samples (i.e.,
V, = S,/n) has a Cauchy pdf 1/[z(1 + y2)]. Thus, “averaging together” a
number of independent Cauchy samples yields a pdf for the average iden-
tical to that of any one of the individual samples. (This result contrasts
sharply to most random variables, for which averaging of n independent
samples reduces the variance by a factor of n7!.)
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3.18 Crofton’s method Suppose that X and X, are two points independently uni-
formly distributed over a highway segment of length a. Define

D'pEIXI‘—Xz‘p p>0

Use Crofton’s method to show that

2a»

’ EDN =0 Do + 2

3.19 Crofton’s method Consider again policeman Jones and burglar Elmer of

Problem 3.1. Use Crofton’s method to verify that the apprehension probability P,
[Problem 3.1(d)] equals (d/£)[1 — Jj(dll)].

Hint: Here the homogeneous solution of the associated differential equation
cannot be discarded.

3.20 Crofton’s method Here we wish to apply Crofton’s method for finding mean
values to the problem of finding the mean Euclidean distance,

E[D] = E[V/(X; — X3)? + (Y1 — Y3)?]

where (X, Y;) and (X;, Y;) are uniformly and independently distributed over a
circle of radius r. Here, for instance, (X;, Y;) and (X,, Y3) could be the locations of
an emergency and a helicopter response unit, respectively, and D would be the
travel distance to the emergency.

a. By arguments similar to those used in the text, show that

5,,:‘&&%/‘_)5,

where
U = E[D]

U, = E[D|exactly one of the points is in the infinitesimal ring
of width dr on the circle circumference]

1L + 6 = mean travel distance in a circle of radius r -+ or

b. Show that

32r

[ acost Ko = 32
= 2J; 2x2 cos 2rdx_97t

nr?
Hint: From tables of integrals, you may find useful

x"*1 cos™1 x 1 XL gy
n s | p—
fx cos™! x dx PR taT V1 — xt

x3 dx X% e 2 —— e
SRR i = 3 2 ST 2
Ta - 3 N X 34 a X
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c. Use your results in parts (a) and (b) to obtain

p = EID] = 125 1 ~ 0.906r

~0.51/4
where A = 7r?2 is the area of the circle.

Note: You have just derived one of the constants in Table 3-1.

3.21 Expectedvalues Suppose that two points (X, Y;)and (X,, Y;) are uniformly
and independently distributed over a circle of area A. Assume that the travel dis-
tance D between the two points is the right-angle travel distance

D=IX| _X2|_*"1Y1 - Yzl
Argue that

4128 /4

EIDl = 7 g5z &

~ 0.6504/4

Hint: Consider D to be the product of the Euclidean distance and a scaling
factor R, the ratio between the right-angle and Euclidean distances.

3.22 Crofton’s method Use Crofton’s method to rederive (3.12a) for the mean
travel distance of a rectangular response area.

Hint: Points in the infinitesimally thick “frame” surrounding the original
rectangle are not indistinguishable, as they are for the circles.

3.23 Coverage, Robbins’s theorem on random sets Imagine a square region of a city
having unit area. Suppose that there are N ambulettes whose positions are inde-
pendently and uniformly distributed over a region T consisting of all points in the
city whose distance from the square is not greater than a. The area of T'is 1 + 4a
-+ ma?. A point in the unit square is said to have sufficient ambulance coverage if at
least one ambulance is within a (Euclidean) distance a of the point, Find the expected
area within the square which is sufficiently covered.

3.24 Coverage of a square lattice by a rectangle A city’s geographical structure is
being placed on a computer. All coordinate positions are being quantized, where
the unit of quantization is 500 feet. The quantization points comprise a lattice that
runs east-west and north-south. The board of elections wishes to know how many
quantization points will be contained in an arbitrary rectangular election district of
dimension ¢ (east-west) and m (north-south).

Assume that the location of the election district on the lattice can be modeled as
random (but the sides are parallel to the two directions of the lattice). Let N be the
number of lattice points contained within the election district.

Ch. 3 Problems 173

a. Show that
E[N] = {m

b. Let{ =p-+qg,m=P+ Q(0=<g,Q <1).Show that

0% =q(1 —g)0(1 — 0) + £20(1 — Q) + m?q(1 — q)
)
3.25 Spatial Poisson process Suppuse that response units are distributed through-
out the city as a homogeneous spatial Poisson process, with an average of p response
units per square mile. Assume that the travel time between (xy, y;) and (x5, y,) is

¥ = [ X1 — x| I |y1 — »al
Vx Uy

where v, and v, are travel speeds in the directions of the abscissa and ordinate,
respectively.

Assume that an incident occurs somewhere in the city, independent of the loca-
tions of the response units.

a. Find the pdf for T}, where

T, = travel time to the kth nearest
response unit, k = 1,2,...

Hint: The set of points that are a given travel time from the incident
is given by a diamond centered at the incident.

b. Find E[T}] and ¢}, and note their functional dependence on k.

3.26 Space~time Poisson process Consider a highway that starts at x = 0 and
extends infinitely eastward toward increasing values of x. Automobile accidents and
breakdowns occur along the highway in a Poisson manner in time and space at a
rate y per hour per mile. Any accident or breakdown that occurs remains at the loca-
tion of occurrence until serviced.

At time ¢ = 0, when there are no unserviced accidents or breakdowns on the
highway, a helicopter starts from x = 0 flying eastward above the highway at a
constant speed s. As a service unit, the helicopter will land at the site of any accident
or breakdown that it flies over. Moreover, given at time ¢ the helicopter is located at
x = st, the helicopter can be dispatched (by radio) to service any accident or break-
down that occurs behind it (i.e., at values of x < st). We assume that any such
dispatch occurs immediately after the accident or breakdown occurs.

We are interested in the time the helicopter first becomes busy, either by landing
at an accident/breakdown site or by being dispatched to an accident/breakdown
behind its current position; in the latter case, the instant of dispatch (not the time of
arrival at the scene) is the time of interest.

Let

T = time that the helicopter first becomes busy
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a. Show that T has a Rayleigh pdf with parameter /257

Jr(t) = 2spte=s t>0
implying that

an- 45
- i

b. Let

B = probability that the first accident/breakdown is a dispatch
incident behind the helicopter

1 — S = probability that the first accident/breakdown occurs as a result
of patrol (i.e., the helicopter discovers it)

Show that # =1 — f =1.

Hint: Condition on the event that the first accident/breakdown occurs
in the time interval (z, t + di).

c. Let

X = location of the first accident/breakdown that the helicopter
services

Show that

3\/s7t
E[X] = 5./=
I =54l
d. Suppose that

L, = time of first accident/breakdown that the helicopter flies over,
assuming that it is no longer dispatched by radio (i.e., all
incidents are helicopter—discovered incidents)

L, = time of first accident/breakdown that the helicopter is dis-

patched to, assuming that it never services accident/break-
downs that it flies over

Then, for instance, T'= Min[L,, L,]. Show that L; and L, are identically
distributed Rayleigh random variables, each with parameter \/37})— Finally,
argue that L, and L, are independent, thereby concluding that the minimum
of two independent Rayleigh random variables, each with parameter »/ 7,
is itself a Rayleigh random variable with parameter /2.

3.27 Circular city, revisited Suppose that two points (R, ®,) and (R,, ®,) are
independently, uniformly distributed over a circular city of radius r, and area 4 =
7r}. Suppose further that this city has a large number of radial routes and circular
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ring routes so that the travel distance between (R;, ®,) and (R,, ®;) can be accur-
ately approximated as

D=|R; — R,| + Min [Ry, R;]|©y — 0,

where 0 < |®; — ©,| < 7 signifies the magnitude of the angular diﬁ‘erence be-
tween ®, and @,. In words, travel from an outer point, say, (Rl,. Q) ifR, > R.’"
to an inner point (R,, ®,) first occurs along a radial route to .a rn}g ]ocate.d a dis-
tance R, from the city center, and then along that ring (in the dlrectl.on of mlfumum
travel distance) to (R,, ®,); the same path is traveled in reverse if travel is from
(R,, ©)) to (R, ©y). A sample path is shown in Figure P3.27.

City center

(71,91)

.

0 otherwise

To
a. Define
W=|R — R;|
Z = Min[R,, R;]
Show that
AR 2 b o .4 ! o<<w<r
pon={rl T T 3G)] oswsn
0 otherwise
and
417z Z\?
—| === 0<z<r
fz(z)={rol:ro ("o)] =Z=To

b. Verify that
4
E[W] =q5'0
and

8
E[Z] = 1570
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g. Determine the mean and variance of the queue length (number of vehicles)

at traffic light 1 at the instant before the light turns green. (This is a primer
for Chapter 4.)

h. A traffic engineer adjusts the phases of the two trafiic lights so that @, =
®, = 0 (relative to 12: 00 noon). Suppose that at 12: 00 noon we are given
conditional information that no vehicles have left a during the last 8 minutes.
Carefully sketch and label the probability density function for the time of

arrival at b of the next vehicle to arrive there.

3.30 Expected travel distances in a two-city area Consider the cities of Camville and
Bigton, which are separated by the River Charlie. Only the }-mile-long Haywire
Bridge connects the two towns. The layout of the cities is shown in Figure P3.30.
The population of each of the two cities is uniformly distributed throughout the

- cities. Camville has a density of Ac people per square mile; Bigton’s density is A5
people per square mile.

| le =
_T Street | directions
we Camville
1 4——u—>|
1 mile Haywire River
2 Bridge g Charlie
fe——p —>{
Assume that
Wg ) Bigton (i) 0<v<u
Gi) Ip —v<lc—u
All distances are in miles
A
“ I ~J|

a. Find the expected travel distance between two randomly selected people in
Camwville; find the expected distance between two randomly selected people
in Bigton.

b. Find the expected distance between a randomly selected person in Camville
and a randomly selected person in Bigton.

c. Find the expected distance between two randomly selected people in the
greater Camville-Bigton metropolitan area.

d.

Find the expected distance between two randomly selected people, one from
each town, assuming that one can cross the River Charlie at any point along
the £z miles of Bigton that run along the river. By how much does your
answer differ from your answer in part (b)?
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e. Compute numerical values for all the questions above assuming that
i. {5 =4 miles ii. Az = 2,000 people/square ml.le
{c = 6 miles Ae = 1,000 people/square mile
u = 2 miles
v = 1 mile
wy = 5 miles
we = 3 miles
3.31 Assigning commuters to subway stations Figure P3.31 shows an urban area
which is served only by a mass-transit rail line with four stops (4, B, C, and_ D) as
shown. There is a single destination at point T for all trips generate:d from this area
(assume that all trips go exactly to point T') during each day’s morning rush hour.

f')

X
X &
X O
xX o

‘ 3km —

[+
}-4——-lkm—->1 I km

Directions l4____l 5km ———a—‘
of travel

In order to get to a transit line station or to walk directly to T, the resi‘dent-s of
the area must walk on an “infinitely dense” grid of urban streets whose directions
run parallel to the boundaries of the area.

The following information is now given:

1. During the morning rush hour the area generates 200 trips per km? with
trip origins distributed uniformly. :

2. Headways between trains are constant and equal to 6 minutes, and each
train rider is equally likely to arrive at a station at any time between two
successive departures of trains from that station. (All nders' are a}ssumed to
be able to ride on the first train to leave a station after their arrival there.)
Stops at each station are 1 minute long.
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3. Trains travel between stations at a speed of 30 km/hr (this includes an
adjustment for acceleration and deceleration periods). People walk at a
constant speed of 5 km/hr.

4. The sole criterion that each individual uses to determine his/her route is to
minimize the expected total trip time to 7 (including time spent waiting for
and riding on trains). Each individual is assumed to know all the informa-
tion given above concerning travel speeds, headways, and so on.

a. Determine the number of riders who will be using each of stations 4, B, C,
and D each day, as well as the number of those that will be walking directly
to T.

b. Compute the expected travel time for a random resident of this area each
day.

c. Draw the boundary of the region whose residents are 9 minutes or less away
- from T. Repeat for the 20-minute boundary. (Be careful in your work.)

d. Repeat part (a) by making the change in the initial data indicated below,
while keeping everything else the same as before. (E.ach part below is sepa-
rate.)

1. The train speed increases to 40 km/hr.
2. Train headways are increased to 10 minutes.
3. Train speed > walking speed.

e. Repeat part (a) by assuming that headways between trains are described by
a negative exponential pdf with a mean of 6 minutes.

3.32 Optimal district design in terms of city blocks [n this problem we shall examine
the question of optimal district design for cases in which the dimensions of a district
can assume only integer values due to the grid structure of streets.

Consider again the case described in Problem 3.15, which involved an n X m
rectangular grid district with two-way streets. In that problem you have shown that

n(m + Dm(n + 1)
+ D)m 4 (m + 1)n]?

EWD) = 5+ m) + S
and that
fn+m < E[D]<in+m+1)

Suppose now that we wish to design a district so as to minimize E[D], subject to
the constraint that the area of the district is greater than or equal to some value 4
(i.e., mn > A). (It is not reasonable to set an equality constraint since m and » can
take only integer values.) For instance, if 4 = 44, we wish to find n and m such that
E[D] is minimized and the district contains at least 44 city blocks.

a. Consider the quantity

4  n(m + Dm(n 4 1)

Q=3[+ Dm + m + Dnf
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under the constraint n 4+ m = C (where C is a positive integer constant).

Argue that under this constraint Q is maximized when n = m (if C is an

even number) or n = m + 1 (if C is an odd number), and minimized when

n = 0 or when m = 0.
Hint: Q is symmetric in » and m.

b. Sho,w that the following algorithm will give the optimal district dimensions
[LARS 72a]:

STEP 1: Seti = [a/A7, where [x7] = smallest integer greater than or equal to x.
STEP2: Setj=1i—1ifi(i—1)= A; otherwise, set j = I.

STEP3: Setk=i+1,¢{=j—1

STEP 4: 1fk€ > A,seti = k,j = l;returnto Step 3. Otherwise, stop; the optimal
district dimensions are n = i, m = J.

c. Apply your algorithm to find the optimal district dimensions for the case

A = 44.
i cm=T n=7,m=6n=238;
d. Compare numerically E[D] for the cases: m=1n=71;
m =pS n=9;m=4,n=11 (Al these designs satisfy mn > 44.) What
do you conclude from these numerical comparisons?
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