Problem Set 1 Solutions

February 9, 2005

1.1.1

We have

$$
\nabla f(x, y)=\binom{2 x+\beta y+1}{2 y+\beta x+2}
$$

Setting $\nabla f(x, y)=0$, we obtain the system of equations

$$
\left(\begin{array}{ll}
2 & \beta \\
\beta & 2
\end{array}\right)\binom{x}{y}=-\binom{1}{2} .
$$

This system has a unique solution (a unique stationary point) except when

$$
\beta^{2}=4
$$

If $\beta^{2}=4$, it can be verified that there is no solution to the above system (no stationary point). Assuming $\beta^{2} \neq 4$, for the stationary point to be a local minimum, the Hessian matrix of f, which is

$$
Q=\left(\begin{array}{cc}
2 & \beta \\
\beta & 2
\end{array}\right)
$$

must be positive semidefinite. But if this is so, $f(x, y)$ will be a convex quadratic function and each local minimum will be global.

The Hessian Q will be positive definite if and only if $\beta^{2}<4$ and positive semidefinite if $\beta^{2}=4$, in which case there is no stationary point by the preceding discussion.

Thus, if $\beta^{2}<4$, there is a unique stationary point which is a global minimum. If $\beta^{2}=4$, there is no stationary point. If $\beta^{2}>4$, there is a unique stationary point which, however, is not a local minimum.

1.1.2 (b)

We have

$$
\nabla f(x, y)=\binom{x+\cos y}{-x \sin y} \quad \nabla^{2} f(x, y)=\left(\begin{array}{cc}
1 & -\sin y \\
-\sin y & -x \cos y
\end{array}\right)
$$

Thus the stationary points of f are:

$$
\left\{\left((-1)^{k+1}, k \pi\right) \mid k=\text { integer }\right\}, \quad\{(0, k \pi+\pi / 2) \mid k=\text { integer }\}
$$

Of these, the local minima are

$$
\left\{\left((-1)^{(k+1)}, k \pi\right) \mid k=\text { integer }\right\}
$$

1.1.3

(a) Since the function $f\left(x^{*}+\alpha d\right)$ is minimized at $\alpha=0$ for all $d \in \Re^{n}$, we have for all α and i

$$
f\left(x^{*}+\alpha e_{i}\right) \geq f\left(x^{*}\right),
$$

which implies that

$$
\lim _{\alpha \rightarrow 0^{+}} \frac{f\left(x^{*}+\alpha e_{i}\right)-f\left(x^{*}\right)}{\alpha} \geq 0, \quad \lim _{\alpha \rightarrow 0^{-}} \frac{f\left(x^{*}+\alpha e_{i}\right)-f\left(x^{*}\right)}{\alpha} \leq 0
$$

or

$$
\left(\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}\right)=0, \quad \forall i .
$$

(b) Consider the function $f(y, z)=\left(z-p y^{2}\right)\left(z-q y^{2}\right)$, where $0<p<q$ and let $x^{*}=(0,0)$. We first show that $g(\alpha)$ is minimized at $\alpha=0$ for all $d \in \Re^{2}$. We have

$$
g(\alpha)=f\left(x^{*}+\alpha d\right)=f(\alpha d)=\left(\alpha d_{2}-p \alpha^{2} d_{1}^{2}\right)\left(\alpha d_{2}-q \alpha^{2} d_{1}^{2}\right)=\alpha^{2}\left(d_{2}-p \alpha d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right) .
$$

Also,

$$
g^{\prime}(\alpha)=2 \alpha\left(d_{2}-p \alpha d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+\alpha^{2}\left(-p d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+\alpha^{2}\left(d_{2}-p \alpha d_{1}^{2}\right)\left(-q d_{1}^{2}\right) .
$$

Thus $g^{\prime}(0)=0$. Furthermore,

$$
\begin{gathered}
g^{\prime \prime}(\alpha)=2\left(d_{2}-p \alpha d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+2 \alpha\left(-p d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+2 \alpha\left(d_{2}-p \alpha d_{1}^{2}\right)\left(-q d_{1}^{2}\right) \\
+2 \alpha\left(-p d_{1}^{2}\right)\left(d_{2}-q \alpha d_{1}^{2}\right)+\alpha^{2}\left(-p d_{1}^{2}\right)\left(-q d_{1}^{2}\right) \\
+2 \alpha\left(d_{2}-p \alpha d_{1}^{2}\right)\left(-q d_{1}^{2}\right)+\alpha^{2}\left(-p d_{1}^{2}\right)\left(-q d_{1}^{2}\right) .
\end{gathered}
$$

Thus $g^{\prime \prime}(0)=2 d_{2}^{2}$, which is greater than 0 if $d_{2} \neq 0$. If $d_{2}=0, g(\alpha)=p q \alpha^{4} d_{1}^{4}$, which is clearly minimized at $\alpha=0$.

Therefore, $(0,0)$ is a local minimum of f along every line that passes through $(0,0)$.
Let's now show that if $p<m<q, f\left(y, m y^{2}\right)<0$ if $y \neq 0$ and that $f\left(y, m y^{2}\right) \geq 0$ otherwise. Consider a point of the form $\left(y, m y^{2}\right)$. We have $f\left(y, m y^{2}\right)=y^{4}(m-p)(m-q)$. Clearly, $f\left(y, m y^{2}\right)<0$ if and only if $p<m<q$ and $y \neq 0$. In any $\epsilon-$ neighborhood of $(0,0)$, there exists a $y \neq 0$ such that for some $m \in(p, q),\left(y, m y^{2}\right)$ also belongs to the neighborhood. Since $f(0,0)=0$, we see that $(0,0)$ is not a local minimum.

