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1.1.1

We have

∇f(x, y) =

(
2x + βy + 1
2y + βx + 2

)

Setting ∇f(x, y) = 0, we obtain the system of equations
(

2 β
β 2

)(
x
y

)
= −

(
1
2

)
.

This system has a unique solution (a unique stationary point) except when

β2 = 4.

If β2 = 4, it can be verified that there is no solution to the above system (no stationary point).
Assuming β2 6= 4, for the stationary point to be a local minimum, the Hessian matrix of f ,
which is

Q =

(
2 β
β 2

)
,

must be positive semidefinite. But if this is so, f(x, y) will be a convex quadratic function
and each local minimum will be global.

The Hessian Q will be positive definite if and only if β2 < 4 and positive semidefinite if
β2 = 4, in which case there is no stationary point by the preceding discussion.

Thus, if β2 < 4, there is a unique stationary point which is a global minimum. If β2 = 4,
there is no stationary point. If β2 > 4, there is a unique stationary point which, however, is
not a local minimum.

1.1.2 (b)

We have

∇f(x, y) =

(
x + cos y
−x sin y

)
∇2f(x, y) =

(
1 − sin y

− sin y −x cos y

)

Thus the stationary points of f are:

{((−1)k+1, kπ) | k = integer}, {(0, kπ + π/2) | k = integer}.
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Of these, the local minima are

{((−1)(k+1), kπ) | k = integer}.

1.1.3
(a) Since the function f(x∗+αd) is minimized at α = 0 for all d ∈ <n, we have for all α and i

f(x∗ + αei) ≥ f(x∗),

which implies that

lim
α→0+

f(x∗ + αei)− f(x∗)
α

≥ 0, lim
α→0−

f(x∗ + αei)− f(x∗)
α

≤ 0,

or (
∂f(x∗)

∂xi

)
= 0, ∀ i.

(b) Consider the function f(y, z) = (z − py2)(z − qy2), where 0 < p < q and let x∗ = (0, 0).
We first show that g(α) is minimized at α = 0 for all d ∈ <2. We have

g(α) = f(x∗ + αd) = f(αd) = (αd2 − pα2d2
1)(αd2 − qα2d2

1) = α2(d2 − pαd2
1)(d2 − qαd2

1).

Also,

g′(α) = 2α(d2 − pαd2
1)(d2 − qαd2

1) + α2(−pd2
1)(d2 − qαd2

1) + α2(d2 − pαd2
1)(−qd2

1).

Thus g′(0) = 0. Furthermore,

g′′(α) = 2(d2 − pαd2
1)(d2 − qαd2

1) + 2α(−pd2
1)(d2 − qαd2

1) + 2α(d2 − pαd2
1)(−qd2

1)

+2α(−pd2
1)(d2 − qαd2

1) + α2(−pd2
1)(−qd2

1)

+2α(d2 − pαd2
1)(−qd2

1) + α2(−pd2
1)(−qd2

1).

Thus g′′(0) = 2d2
2, which is greater than 0 if d2 6= 0. If d2 = 0, g(α) = pqα4d4

1, which is clearly
minimized at α = 0.

Therefore, (0, 0) is a local minimum of f along every line that passes through (0, 0).
Let’s now show that if p < m < q, f(y,my2) < 0 if y 6= 0 and that f(y, my2) ≥ 0

otherwise. Consider a point of the form (y,my2). We have f(y,my2) = y4(m − p)(m − q).
Clearly, f(y,my2) < 0 if and only if p < m < q and y 6= 0. In any ε−neighborhood of (0, 0),
there exists a y 6= 0 such that for some m ∈ (p, q), (y, my2) also belongs to the neighborhood.
Since f(0, 0) = 0, we see that (0, 0) is not a local minimum.
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