Recitation 3 Solutions

March 12, 2005

Optimal Routing in a Communication Network

Example 2.1.3, p.198-p.200, text book
Example 5.7, p.453-454, "Data Networks" by Dimitri Bertsekas and Robert Gallager

2.3.3

(a) Since the scaling matrix H^{k} is positive definite and diagonal, we have that each diagonal term H_{i}^{k} of the matrix H^{k} is positive. Define $y=\left(H^{k}\right)^{1 / 2} x$, and $h^{k}(y)=f\left(\left(H^{k}\right)^{-1 / 2} y\right)$. Then $\nabla h^{k}(y)=\left(H^{k}\right)^{-1 / 2} \nabla f\left(x^{k}\right)$ and the set $X=\left\{x \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=1, \ldots, n\right\}$ is transformed to $Y^{k}=\left\{y \mid \hat{\alpha}_{i}^{k} \leq x_{i} \leq \hat{\beta}_{i}^{k}, i=1, \ldots, n\right\}$ with $\hat{\alpha}_{i}^{k}=\left(H_{i}^{k}\right)^{1 / 2} \alpha_{i}, \quad \hat{\beta}_{i}^{k}=\left(H_{i}^{k}\right)^{1 / 2} \beta_{i}$ for all i, k. Through this transformation the gradient projection method in y-space is given by

$$
\begin{align*}
& y^{k+1}=y^{k}+\gamma^{k}\left(\overline{y^{k}}-y^{k}\right), \tag{1}\\
& \overline{y^{k}}=\left[y^{k}-s^{k} \nabla h^{k}\left(y^{k}\right)\right]^{+}, \tag{2}
\end{align*}
$$

where $[\cdot]^{+}$denotes the projection on the set Y. Hence

$$
\overline{y_{i}^{k}}= \begin{cases}\hat{\alpha}_{i}^{k} & \text { if } y_{i}^{k}-s^{k}\left(\nabla h^{k}\left(y^{k}\right)\right)_{i} \leq \hat{\alpha}_{i}^{k} \\ \hat{\beta}_{i}^{k} & \text { if } y_{i}^{k}-s^{k}\left(\nabla h^{k}\left(y^{k}\right)\right)_{i} \geq \hat{\beta}_{i}^{k} \\ y_{i}^{k}-s^{k}\left(\nabla h^{k}\left(y^{k}\right)\right)_{i} & \text { otherwise. }\end{cases}
$$

Going back to the x-space we obtain the desired form for the coordinates of the vector $\overline{x^{k}}$, namely

$$
x_{i}^{k}= \begin{cases}\alpha_{i} & \text { if } x_{i}^{k}-\frac{s^{k}}{H_{i}^{k}} \cdot \frac{\partial f\left(x^{k}\right)}{\partial x_{i}} \leq \alpha_{i} \\ \beta_{i} & \text { if } x_{i}^{k}-\frac{s^{k}}{H_{i}^{k}} \cdot \frac{\partial f\left(x^{k}\right)}{\partial x_{i}} \geq \beta_{i} \\ x_{i}^{k}-\frac{s^{k}}{H_{i}^{k}} \cdot \frac{\partial f\left(x^{k}\right)}{\partial x_{i}} & \text { otherwise. }\end{cases}
$$

(b) Here we have

$$
\begin{gather*}
x^{k+1}=x^{k}+\gamma^{k}\left(\overline{x^{k}}-x^{k}\right) \\
\overline{x^{k}}=\arg \min _{x \in X}\left\{\nabla f\left(x^{k}\right)^{\prime}\left(x-x^{k}\right)+\frac{1}{2 s^{k}}\left(x-x^{k}\right)^{\prime} H^{k}\left(x-x^{k}\right)\right\} \tag{1}
\end{gather*}
$$

where γ^{k} is the stepsize, H^{k} is diagonal with $H_{i}^{k}>0$, and X is a simplex, i.e.

$$
X=\left\{x \mid \sum_{i=1}^{n} x_{i}=r, \quad x \geq 0\right\} .
$$

Since the objective function in (1) is convex, the first order necessary conditions are also sufficient. Thus, $\overline{x^{k}}$ is optimal in (1) if and only if

$$
\overline{x_{i}^{k}}>0 \Longrightarrow \frac{\partial f\left(x^{k}\right)}{\partial x_{j}}+\frac{H_{j}^{k}}{s^{k}}\left(\bar{x}_{j}-x_{j}^{k}\right) \geq \frac{\partial f\left(x^{k}\right)}{\partial x_{i}}+\frac{H_{i}^{k}}{s^{k}}\left(\bar{x}_{i}-x_{i}^{k}\right), \quad \forall j .
$$

To find $\overline{x^{k}}$ algorithmically, we try to find w such that

$$
\begin{equation*}
\frac{\partial f\left(x^{k}\right)}{\partial x_{j}}+\frac{H_{j}^{k}}{s^{k}}\left(x_{j}-x_{j}^{k}\right) \geq w, \quad \forall j, \tag{2}
\end{equation*}
$$

with equality only if $x_{i}>0$. So we start with some small value of w and increase it up to the point where

$$
\begin{equation*}
\sum_{j=1}^{n} \max \left\{0, \frac{s^{k}}{H_{j}^{k}}\left(w-\frac{\partial f\left(x^{k}\right)}{\partial x_{j}}+\frac{H_{j}^{k}}{s^{k}} x_{j}^{k}\right)\right\}=r \tag{3}
\end{equation*}
$$

If \bar{w} is the value obtained (i.e. \bar{w} satisfies both (2) and (3)), then the desired solution $\overline{x^{k}}$ is given by

$$
\overline{x_{i}^{k}}=\max \left\{0, \frac{s^{k}}{H_{i}^{k}}\left(\bar{w}-\frac{\partial f\left(x^{k}\right)}{\partial x_{i}}+\frac{H_{i}^{k}}{s^{k}} x_{i}^{k}\right)\right\}, \quad \forall i
$$

3.1.6

By introducing the new variables

$$
y_{i}=\ln \left(x_{i}\right), \quad i=1, . ., n
$$

the original problem is transformed to an equivalent problem

$$
\begin{array}{r}
\min \sum_{i=1}^{n} \alpha_{i} e^{y_{i}} \\
\text { subject to } \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \quad y_{i} \in,
\end{array}
$$

and the Lagrangian function of this problem is

$$
L(y, \lambda)=\sum_{i=1}^{n} \alpha_{i}\left(e^{y_{i}}+\lambda y_{i}\right)
$$

The 1st order necessary conditions are

$$
\nabla_{y} L\left(y^{*}, \lambda^{*}\right)=0 \quad \Leftrightarrow \quad e^{y_{i}^{*}}+\lambda^{*}=0, \quad i=1, . ., n
$$

$$
\nabla_{\lambda} L\left(y^{*}, \lambda^{*}\right)=0 \quad \Leftrightarrow \quad \alpha_{1} y_{1}^{*}+\cdots+\alpha_{n} y_{n}^{*}=0 .
$$

The above system possesses a unique solution

$$
y^{*}=0, \quad \lambda^{*}=-1
$$

Since the function $f(y)=\sum_{i=1}^{n} \alpha_{i} e^{y_{i}}$ is continuous and coercive, and the feasible set

$$
\left\{y \in \mid \sum_{i=1}^{n} \alpha_{i} y_{i}=0\right\}
$$

is closed, by Weierstrass' theorem, the minimization problem has at least one global minimum y^{*}. Furthermore, every feasible point is regular [here $h(y)=\sum_{i=1}^{n} \alpha_{i} y_{i}$ and $\nabla h(y)^{\prime}=$ $\left.\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\prime} \neq 0\right]$, so that the 1st order necessary conditions must be satisfied at a global minimum. Because $y^{*}=0$ and $\lambda^{*}=-1$ is the unique pair satisfying the 1 st order necessary conditions, the point $y^{*}=0$ is the unique global minimum, which in the x-space corresponds to $x^{*}=(1, \ldots, 1)^{\prime}$ with the minimum cost value $f\left(x^{*}\right)=\alpha_{1}+\cdots+\alpha_{n}=1$.

Now let x_{1}, \ldots, x_{n} be positive numbers and let

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}=a>0
$$

for some positive number a. Since $1+\cdots+n=1$, we have

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}=a^{\alpha_{1}+\cdots+\alpha_{n}} .
$$

Hence

$$
\left(\frac{x_{1}}{a}\right)^{\alpha_{1}} \cdots\left(\frac{x_{n}}{a}\right)^{\alpha_{n}}=1
$$

and from the above minimization problem we get

$$
\sum_{i=1}^{n} \alpha_{i} \frac{x_{i}}{a} \geq 1
$$

or

$$
\sum_{i=1}^{n} \alpha_{i} x_{i} \geq a=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

