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Optimal Routing in a Communication Network

Example 2.1.3, p.198-p.200, text book
Example 5.7, p.453-454, ”Data Networks” by Dimitri Bertsekas and Robert Gallager

2.3.3

(a) Since the scaling matrix Hk is positive definite and diagonal, we have that each diagonal
term Hk

i of the matrix Hk is positive. Define y = (Hk)1/2x, and hk(y) = f((Hk)−1/2y). Then
∇hk(y) = (Hk)−1/2∇f(xk) and the set X = {x | αi ≤ xi ≤ βi, i = 1, . . . , n} is transformed
to Y k = {y | α̂k

i ≤ xi ≤ β̂k
i , i = 1, . . . , n} with α̂k

i = (Hk
i )1/2αi, β̂k

i = (Hk
i )1/2βi for all i, k.

Through this transformation the gradient projection method in y-space is given by

yk+1 = yk + γk(ȳk − yk), (1)

ȳk = [yk − sk∇hk(yk)]+, (2)

where [·]+ denotes the projection on the set Y . Hence

ȳk
i =





α̂k
i if yk

i − sk
(
∇hk(yk)

)
i
≤ α̂k

i ,

β̂k
i if yk

i − sk
(
∇hk(yk)

)
i
≥ β̂k

i ,

yk
i − sk

(
∇hk(yk)

)
i

otherwise.

Going back to the x-space we obtain the desired form for the coordinates of the vector x̄k,
namely

xk
i =





αi if xk
i − sk

Hk
i
· ∂f(xk)

∂xi
≤ αi,

βi if xk
i − sk

Hk
i
· ∂f(xk)

∂xi
≥ βi,

xk
i − sk

Hk
i
· ∂f(xk)

∂xi
otherwise.

(b) Here we have
xk+1 = xk + γk(x̄k − xk),

x̄k = arg min
x∈X

{
∇f(xk)′(x− xk) +

1

2sk
(x− xk)′Hk(x− xk)

}
, (1)
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where γk is the stepsize, Hk is diagonal with Hk
i > 0, and X is a simplex, i.e.

X = {x |
n∑

i=1

xi = r, x ≥ 0}.

Since the objective function in (1) is convex, the first order necessary conditions are also
sufficient. Thus, x̄k is optimal in (1) if and only if

x̄k
i > 0 =⇒ ∂f(xk)

∂xj

+
Hk

j

sk
(x̄j − xk

j ) ≥
∂f(xk)

∂xi

+
Hk

i

sk
(x̄i − xk

i ), ∀ j.

To find x̄k algorithmically, we try to find w such that

∂f(xk)

∂xj

+
Hk

j

sk
(xj − xk

j ) ≥ w, ∀ j, (2)

with equality only if xi > 0. So we start with some small value of w and increase it up to the
point where

n∑

j=1

max

{
0,

sk

Hk
j

(
w − ∂f(xk)

∂xj

+
Hk

j

sk
xk

j

)}
= r. (3)

If w̄ is the value obtained (i.e. w̄ satisfies both (2) and (3)), then the desired solution x̄k is
given by

x̄k
i = max

{
0,

sk

Hk
i

(
w̄ − ∂f(xk)

∂xi

+
Hk

i

sk
xk

i

)}
, ∀ i.

3.1.6

By introducing the new variables

yi = ln(xi), i = 1, .., n,

the original problem is transformed to an equivalent problem

min
n∑

i=1

αie
yi

subject to
n∑

i=1

αiyi = 0, yi ∈,

and the Lagrangian function of this problem is

L(y, λ) =
n∑

i=1

αi(e
yi + λyi).

The 1st order necessary conditions are

∇yL(y∗, λ∗) = 0 ⇔ ey∗i + λ∗ = 0, i = 1, .., n
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∇λL(y∗, λ∗) = 0 ⇔ α1y
∗
1 + · · ·+ αny∗n = 0.

The above system possesses a unique solution

y∗ = 0, λ∗ = −1.

Since the function f(y) =
∑n

i=1 αie
yi is continuous and coercive, and the feasible set

{y ∈|
n∑

i=1

αiyi = 0}

is closed, by Weierstrass’ theorem, the minimization problem has at least one global mini-
mum y∗. Furthermore, every feasible point is regular [here h(y) =

∑n
i=1 αiyi and ∇h(y)′ =

(α1, . . . , αn)′ 6= 0], so that the 1st order necessary conditions must be satisfied at a global
minimum. Because y∗ = 0 and λ∗ = −1 is the unique pair satisfying the 1st order necessary
conditions, the point y∗ = 0 is the unique global minimum, which in the x-space corresponds
to x∗ = (1, . . . , 1)′ with the minimum cost value f(x∗) = α1 + · · ·+ αn = 1.

Now let x1, ..., xn be positive numbers and let

xα1
1 xα2

2 · · ·xαn
n = a > 0

for some positive number a. Since 1 + · · ·+ n = 1, we have

xα1
1 xα2

2 · · ·xαn
n = aα1+···+αn .

Hence (
x1

a

)α1

· · ·
(

xn

a

)αn

= 1

and from the above minimization problem we get

n∑

i=1

αi
xi

a
≥ 1

or
n∑

i=1

αixi ≥ a = xα1
1 xα2

2 · · · xαn
n .
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