6.252 NONLINEAR PROGRAMMING

LECTURE 3: GRADIENT METHODS

LECTURE OUTLINE

- Quadratic Unconstrained Problems
- Existence of Optimal Solutions
- Iterative Computational Methods
- Gradient Methods - Motivation
- Principal Gradient Methods
- Gradient Methods - Choices of Direction

QUADRATIC UNCONSTRAINED PROBLEMS

$$
\min _{x \in \Re^{n}} f(x)=\frac{1}{2} x^{\prime} Q x-b^{\prime} x
$$

where Q is $n \times n$ symmetric, and $b \in \Re^{n}$.

- Necessary conditions:

$$
\nabla f\left(x^{*}\right)=Q x^{*}-b=0,
$$

$\nabla^{2} f\left(x^{*}\right)=Q \geq 0:$ positive semidefinite.

- $Q \geq 0 \Rightarrow f$: convex, nec. conditions are also sufficient, and local minima are also global
- Conclusions:
$-Q:$ not $\geq 0 \Rightarrow f$ has no local minima
- If $Q>0$ (and hence invertible), $x^{*}=Q^{-1} b$ is the unique global minimum.
- If $Q \geq 0$ but not invertible, either no solution or ∞ number of solutions

Illustration of the isocost surfaces of the quadratic cost function $f: \Re^{2} \mapsto \Re$ given by

$$
f(x, y)=\frac{1}{2}\left(\alpha x^{2}+\beta y^{2}\right)-x
$$

for various values of α and β.

EXISTENCE OF OPTIMAL SOLUTIONS

Consider the problem

$$
\min _{x \in X} f(x)
$$

- The set of optimal solutions is

$$
X^{*}=\cap_{k=1}^{\infty}\left\{x \in X \mid f(x) \leq \gamma_{k}\right\}
$$

where $\left\{\gamma_{k}\right\}$ is a scalar sequence such that $\gamma_{k} \downarrow f^{*}$ with

$$
f^{*}=\inf _{x \in X} f(x)
$$

- X^{*} is nonempty and compact if all the sets $\left\{x \in X \mid f(x) \leq \gamma_{k}\right\}$ are compact. So:
- A global minimum exists if f is continuous and X is compact (Weierstrass theorem)
- A global minimum exists if X is closed, and f is continuous and coercive, that is, $f(x) \rightarrow$ ∞ when $\|x\| \rightarrow \infty$

GRADIENT METHODS - MOTIVATION

If $\nabla f(x) \neq 0$, there is an interval $(0, \delta)$ of stepsizes such that

$$
f(x-\alpha \nabla f(x))<f(x)
$$

for all $\alpha \in(0, \delta)$.

If d makes an angle with $\nabla f(x)$ that is greater than 90 degrees,

$$
\nabla f(x)^{\prime} d<0
$$

there is an interval $(0, \delta)$ of stepsizes such that $f(x+$ $\alpha d)<f(x)$ for all $\alpha \in$ $(0, \delta)$.

PRINCIPAL GRADIENT METHODS

$$
x^{k+1}=x^{k}+\alpha^{k} d^{k}, \quad k=0,1, \ldots
$$

where, if $\nabla f\left(x^{k}\right) \neq 0$, the direction d^{k} satisfies

$$
\nabla f\left(x^{k}\right)^{\prime} d^{k}<0
$$

and α^{k} is a positive stepsize. Principal example:

$$
x^{k+1}=x^{k}-\alpha^{k} D^{k} \nabla f\left(x^{k}\right),
$$

where D^{k} is a positive definite symmetric matrix

- Simplest method: Steepest descent

$$
x^{k+1}=x^{k}-\alpha^{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
$$

- Most sophisticated method: Newton's method

$$
x^{k+1}=x^{k}-\alpha^{k}\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
$$

STEEPEST DESCENT AND NEWTON'S METHOD

Slow convergence of steepest descent

Fast convergence of New-
 ton's method $\mathrm{w} / \alpha^{k}=1$. Given x^{k}, the method obtains x^{k+1} as the minimum of a quadratic approximation of f based on a second order Taylor expansion around x^{k}.

OTHER CHOICES OF DIRECTION

- Diagonally Scaled Steepest Descent
$D^{k}=$ Diagonal approximation to $\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1}$
- Modified Newton's Method

$$
D^{k}=\left(\nabla^{2} f\left(x^{0}\right)\right)^{-1}, \quad k=0,1, \ldots,
$$

- Discretized Newton's Method

$$
D^{k}=\left(H\left(x^{k}\right)\right)^{-1}, \quad k=0,1, \ldots
$$

where $H\left(x^{k}\right)$ is a finite-difference based approximation of $\nabla^{2} f\left(x^{k}\right)$,

- Gauss-Newton method for least squares problems: $\min _{x \in \Re^{n} \frac{1}{2}}^{2}\|g(x)\|^{2}$. Here

$$
D^{k}=\left(\nabla g\left(x^{k}\right) \nabla g\left(x^{k}\right)^{\prime}\right)^{-1}, \quad k=0,1, \ldots
$$

