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2.2.1

We have

∇f(x) =




x1

x2

.1x3 + .55




and

∇2f(x) =




1 0 0
0 1 0
0 0 1


 .

Since the Hessian is positive definite for all x ∈ X, f(x) is convex over the set X. Thus
satisfying the first order necessary condition is sufficient for x∗ to be a global minimum. We
have

∇f(x∗)′(x− x∗) =
(

1
2

1
2

.55
)



x1 − 1/2
x2 − 1/2
x3 − 0


 =

1

2
(x1 + x2 + x3) + 0.05x3 − 1

2
.

Since x1 + x2 + x3 is constrained to equal 1, we have

∇f(x∗)′(x− x∗) = 0.05x3 ≥ 0, ∀ x ∈ X.

Thus x∗ = (1
2
, 1

2
, 0) is optimal.

2.6.1
Convergence from both points to the optimal value x∗ = (1, 0, 0) is very fast (about 4-6 iter-
ations).

3.1.3

The problem is
min f(x) = ‖y − x‖+ ‖z − x‖

subject to h(x) = 0.
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Using the Lagrange Multiplier Theorem, we have that if x∗ is optimal and regular, then there
exists a scalar λ∗ such that

x∗ − y

‖x∗ − y‖ +
x∗ − z

‖x∗ − z‖ + λ∗∇h(x∗) = 0.

This is equivalent to

λ∗∇h(x∗) =
y − x∗

||y − x∗|| +
z − x∗

||z − x∗|| ,

which means that the vector ∇h(x∗) lies in between the two unit vectors. Then for the sum of
the unit vectors to be collinear with ∇h(x∗), ∇h(x∗) must bisect the angle formed by x∗ − y
and x∗ − z. Thus φy = φz.

3.1.5
(a) Let Pk be the problem

min x′Qx

s.t. ‖x‖2 = 1

e′ix = 0, i = 1, . . . , k − 1,

for 1 ≤ k ≤ n. The feasible region of Pk is contained in the feasible region of Pk−1. Therefore

λ1 ≤ λ2 ≤ · · · ≤ λn.

(b) By construction, we have ||ei|| = 1 for all i, and e′iek = 0 for all i and k with i 6= k,
i.e., the nonzero vectors e1, . . . , en are mutually orthogonal. Therefore e1, . . . , en are linearly
independent.
(c) From (b), e1, . . . , en are regular points for P1, . . . , Pn, respectively. By the Lagrange
Multiplier Theorem, there exists a unique µ∗ ∈ <i for each problem Pi such that

2Qei + 2µ∗i ei + µ∗1e1 + . . . µ∗i−1ei−1 = 0. (1)

Pre-multiplying by e′i, we get
2 e′iQei︸ ︷︷ ︸

=λi

+2µ∗i e′iei︸︷︷︸
=1

= 0,

which is satisfied by µ∗i = −λi. Thus we can view −λi as the Lagrange multiplier for Pi

associated with the constraint ||x||2 = 1.
Now consider problem P1. Equation (1) yields 2Qe1 + 2µ∗1e1 = 2Qe1 − 2λ1e1 = 0, and so

e1 is an eigenvector corresponding to the eigenvalue λ1 of Q. Now assume that e1, . . . , ei−1

are eigenvectors corresponding to the eigenvalues λ1, . . . , λi−1 of Q. Then pre-multiplying Eq.
(1) by e′j for j < i, we have

2e′jQei + µ∗je
′
jej = 2ejλjei − µ∗j = −µ∗j = 0.

Substituting the values µ∗i = −λi, µ
∗
1 = · · · = µi−1 = 0 into Eq. (1), we have

2Qei = 2λiei,
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and thus ei is an eigenvector corresponding to the eigenvalue λi of Q. By induction, we have
that λ1, . . . , λn are eigenvalues of Q, and e1, . . . , en are corresponding eigenvectors.

3.1.7
For the cost function, we have

f(x) =
m∑

j=1

‖x− aj‖2 = m‖x‖2 +
m∑

j=1

‖aj‖2 − 2x′
m∑

j=1

aj,

which is equal to

m‖x− 1

m

m∑
j=1

aj‖2 +
m∑

j=1

‖aj‖2 − 1

m
‖

m∑
j=1

aj‖2.

Hence
min
||x||2=1

f(x) = min
||x||2=1

||x− â||2

and
max
||x||2=1

f(x) = max
||x||2=1

||x− â||2,
i.e. the two optimization problems are equivalent to finding the points on the unit sphere that
are at minimum and maximum distance from the center of the gravity â. If â 6= 0, these are
the points of intersection of the unit sphere with the line that connects the origin and â. If
â = 0, then all feasible points have the same cost.

To solve the problem using Lagrange multiplier theorem, we apply the 1st order necessary
condition. Since all feasible points are regular, we have that for a local minimum or a local
maximum x∗ there exists a scalar λ∗ such that

2
m∑

j=1

(x∗ − aj) + 2λ∗x∗ = 0.

Assuming that â 6= 0, we see that m + λ∗ 6= 0, so

x∗ =
m

m + λ∗
â.

Thus all local maxima and local minima lie on the line connecting the origin with â, as well
as on the surface of the unit sphere. There are exactly two such points. Since the constraint
set is compact there exists a global minimum and a global maximum, so one of the two points
is the global maximum and the other is the global minimum.

3.1.11
Let x∗ be a regular point and a local minimum of the problem

min
h(x)=0

f(x).

Let I = {i | λ∗i 6= 0} ⊆ {1, 2, . . . , m}, where λ∗ is the corresponding Lagrange multiplier. For
k = 1, 2, . . ., we introduce the penalty function

F k(x) = f(x) +
k

2
||h(x)||2 +

α

2
||x− x∗||2,
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where α is some positive scalar. We can choose ε > 0 small enough such that f(x∗) ≤ f(x)
for all feasible x in the closed sphere S = {x | ||x − x∗|| ≤ ε}. Let xk be the unique optimal
solution of the problem

min
x∈S

F k(x).

(An optimal solution exists because of the Weierstrass’ theorem, and it is unique because F k

is strongly convex.) In the same way as in the Section 3.1.1, it can be shown that the sequence
{xk} converges to x∗, and that {kh(xk)} converges to the vector λ∗. Then, for all i ∈ I the
sequence {khi(x

k)} converges to λ∗i 6= 0. Let N be any neighborhood of x∗. For any i ∈ I,
there is an index ki such that

xk ∈ N and λ∗i hi(x
k) > 0, ∀ k ≥ ki.

Let k̂ = max{ki | i ∈ I}. Then xk̂ is in the neighborhood N and λ∗i hi(x
k̂) > 0 for all i ∈ I,

i.e. xk̂ is the desired point.

3.1.12
Let x∗ be a regular point and a local minimum for the problem

min
h(x)=0

f(x),

with f(x∗) 6= 0. For the constraint set, we have {x | h(x) = 0} = {x | ||h(x)|| = 0} = {x |
||h(x)||2 = 0}. Therefore x∗ is also a local minimum for the modified problem

min
||h(x)||2=0

f(x).

However, none of the feasible points of the original problem is a regular point for the modified
problem because ∇(||h(x)||2) = 2∇h(x)h(x) = 0 for all x with h(x) = 0. If there existed a
Lagrange multiplier λ∗ for the local minimum x∗ of the modified problem, then we would have

∇f(x∗) + 2λ∗∇h(x∗)h(x∗) = ∇f(x∗) = 0,

which contradicts the fact that ∇f(x∗) 6= 0. Hence, the local minimum x∗ of the modified
problem has no Lagrange multiplier.
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