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Each of the five algorithms presented here for solving the quartic equation provides:  

• stable analytic solutions for any combination of real coefficients, 
• formulas that convert easily to code, and 
• calculations that use real numbers only. 

Each algorithm is a new modification of an existing method that lacks one of these three 
properties.  Ferrari’s method[1, pp 237-253] in its common algorithmic version[2, pp 176-177], 

[3, §4.4.2], [4] and Descartes’ method[5, pp 180-187] can become computationally unstable.  The 
National Bureau of Standards (NBS) method[6, pp 17-18] is unnecessarily complicated.  The 
method of Euler[7, pp 256-262] and that of Van der Waerden[8, pp 190-192] and the Digital Library 
of Mathematical Functions (DLMF)[9, §1.11(iii)] use calculations with complex numbers. 
 
The algorithm inputs are four real coefficients A3, A2, A1, and A0, and the outputs are the 
four values Z1, Z2, Z3 and Z4 such that 

Z4 + A3Z3 + A2Z2 + A1Z + A0  = (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4)    for all Z. 

The outputs are thus the four solutions of the general quartic equation 

 Zn
4

 + A3 Zn
3

 + A2 Zn
2

 + A1 Zn + A0 = 0, n = 1, 2, 3, 4. (1) 

 
Except for the NBS method, the algorithms begin by calculating C = A3/4, b2, b1, and b0.  The 
last three of these values are coefficients of the equivalent depressed quartic equation with 
no cubic term: 
 Tn

4
 + b2Tn

2
 + b1Tn + b0  =  0 n = 1, 2, 3, 4. (2) 

The solutions Zn of (1) are related to the solutions Tn of (2) by Zn = Tn − C.  The coefficients 
b2, b2, and b0 are calculated from C, A2, A1, and A0 as shown in the algorithm tables below.  
 
Part I of this document presents the five algorithms in both their original and modified 
forms.  Notes explain the computational shortcoming of each original algorithm and the fix.  
Part I concludes with check equations to validate the set of four calculated solutions Zn.  
Part II assesses the suitability of each algorithm for general calculation and demonstrates 
that all of the algorithms are mathematically equivalent to each other.  Part III derives the 
algorithms. 
 
Unless noted otherwise, the radical sign  denotes the principal square root.  The principal 
square root of a positive real number is the positive square root.  The principal square root 
of a negative real number is the positive imaginary square root.  If z is complex with 
modulus r and argument  such that  −    , then z = rei and the principal square root 

of z is √z = √r ei/2. 
 
Analytic methods for solving quartic equations, including the algorithms presented here, 
require the solution(s) of a corresponding resolvent cubic equation.  See the companion 
paper on algorithms for solving cubic equations. 
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Ferrari’s Method 

In his 1545 book Ars Magna, Girolamo 
Cardano provides the earliest known 
description of Ferrari’s method.[1, pp 237-

253] Modern algebraic notation had not 
been invented at the time.  To demonstrate the method, Cardano gave rules for solving 
the depressed quartic equation and then worked out sample problems. 
 
Similar to Cardano’s Problem V, the common algorithm [2, pp 176-177], [3, §4.4.2], [4] uses the 
solution m of the resolvent cubic equation in a divisor.  The quotient b1/(2√2m ) in the 
formulas for Zn causes the common algorithm to become computationally unstable as m 
approaches zero.  The calculated m value typically contains a small round-off error not 
found in b1.  As b1 and true m approach zero, the round-off error dominates the 
calculated m value, and the algorithm becomes unstable.  The appendix demonstrates a 
particularly severe case in which the calculated value of solution Z1 suffers large error 
even when m is several orders of magnitude greater than the round-off error. 
 
The modified algorithm, a modern generalization of Cardano’s Problem VIII, avoids the 
instability by replacing b1/(2√2m ) with R.  To check the validity of this replacement, add 
b1

2/8 to both sides of the resolvent cubic equation, divide through by m, and take the 
square root.  

Modified Algorithm 

Given:  Real coefficients  A3, A2, A1, and A0, 

Find:    Z1, Z2, Z3 and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  = 
 (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Calculation: C = A3 / 4,        b2 = A2 − 6C2, 
 b1 = A1 − 2A2C + 8C3, 
 b0 = A0 − A1C + A2C2 − 3C4 

Solve this resolvent cubic equation for real m: 

     m3 + b2 m2 + (b2
2/4 − b0)m − b1

2/8  =  0. 

Use a real solution m  0 if it exists.  Otherwise, 
m = 0. 

 = {
1    if b1 > 0

−1  otherwise
 

R =  √m2 + b2m + b2
2/4 − b0 

 Z1,2  =     √m/2 − C    √−m/2 − b2/2 − R 

 Z3,4  =  −√m/2 − C    √−m/2 − b2/2 + R 

where the radicand in the formula for R is 
nonnegative provided that real m > 0 is used if 
it exists. 

Common Algorithm 

Given:  Real coefficients A3, A2, A1, and A0, 

Find:    Z1, Z2, Z3 and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  = 
 (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Calculation: C   = A3 / 4,        b2 = A2 − 6C2, 

 b1 = A1 − 2A2C + 8C3, 
 b0 = A0 − A1C + A2C2 − 3C4 

Solve this resolvent cubic equation for real m: 

     m3 + b2 m2 + (b2
2/4 − b0)m − b1

2/8  =  0. 

Use a real solution m  0 if it exists.  Otherwise, 
m = 0. 

Case:  m  0 

Z1,2  =    √m/2 − C  √−m/2 − b2/2 − b1/(2√2m ) 

Z3,4  = −√m/2 − C  √−m/2 − b2/2 + b1/(2√2m ) 

Case:  m = 0 

Z1,2  =  −C  √−b2/2 + √b2
2/4 − b0 

Z3,4  =  −C  √−b2/2 − √b2
2/4 − b0  

where b2
2/4 − b0  0 provided that no real m  0 

exists. 
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Descartes’ Method 

The two Descartes algorithms are similar 
to the corresponding Ferrari algorithms.  
The Descartes formulas for Zn become the 

corresponding Ferrari formulas by substituting √2m for y.  Substitute √2m for y in the 
Descartes resolvent cubic equation and divide through by 8 to obtain the Ferrari 
resolvent cubic equation. 
 
Like the Ferrari common algorithm, the Descartes original algorithm suffers 
computational instability as the solution y2 of the resolvent cubic equation approaches 
zero.  The instability is avoided in the Descartes modified algorithm just as it is in the 
Ferrari modified algorithm. 
 
  

Original Algorithm 

Given:  Real coefficients  A3, A2, A1, and A0, 

Find:    Z1, Z2, Z3 and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  = 
 (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Calculation: C   = A3 / 4,        b2 = A2 − 6C2, 

 b1 = A1 − 2A2C + 8C3, 
 b0 = A0 − A1C + A2C2 − 3C4 

Solve this resolvent cubic equation for real y2: 

y6 + 2b2 y4 + (b2
2 − 4b0)y2 − b1

2  =  0.  

Use a real solution y2  0 if it exists.  Otherwise, 
y2 = 0.  Value y is the nonnegative square root of 

y2. 

Case:  y2  0 

 Z1,2  =    y/2 − C  √−y2/4 − b2/2 − b1/(2y) 

 Z3,4  = −y/2 − C  √−y2/4 − b2/2 + b1/(2y) 

Case:   y2 = 0 

Z1,2  =  −C  √−b2/2 + √b2
2/4 − b0 

Z3,4  =  −C  √−b2/2 − √b2
2/4 − b0  

where b2
2/4 − b0  0 provided no real y2  0 exists. 

Modified Algorithm 

Given:  Real coefficients  A3, A2, A1, and A0, 

Find:    Z1, Z2, Z3 and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  = 
 (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Calculation: C = A3 / 4,        b2 = A2 − 6C2, 
 b1 = A1 − 2A2C + 8C3, 
 b0 = A0 − A1C + A2C2 − 3C4 

Solve this resolvent cubic equation for real y2: 

y6 + 2b2 y4 + (b2
2 − 4b0)y2 − b1

2  =  0.  

Use a real solution y2  0 if it exists.  Otherwise, 
y2 = 0.  Value y is the nonnegative square root of 

y2. 

 = {
1    if b1 > 0

−1  otherwise
 

R =  √y4/4 + (b2/2)y2 + b2
2/4 − b0 

Z1,2  =    y/2 − C  √−y2/4 − b2/2 − R 

Z3,4  = −y/2 − C  √−y2/4 − b2/2 + R 

where the radicand in the formula for R is 
nonnegative provided that real y2  0 is used if it 
exits. 



Part I  --  The Algorithms and Check Equations 

6/17/2020  Page 5 of 42 

NBS Method 

Original Algorithm 

Given  Z4 + A3Z3 + A2Z2 + A1Z + A0  =  0,  find the real root u1 of the cubic equation  

u3 − A2u2 + (A1A3 − 4A0)u − (A1
2 + A0A3

2 − 4A0A2) = 0 

and determine the four roots of the quartic as solutions of the two quadratic equations 

v2 + [
A3

2
∓ (

A3
2

4
+ u1 − A2)

1
2

] v +
u1

2
∓ [(

u1

2
)

2

− A0]

1
2

= 0. 

If all roots of the cubic equation are real, use the value of u1 which gives real coefficients in the 
quadratic equation and select signs so that if  

Z4 + A3Z3 + A2Z2 + A1Z + A0  =  (Z2+p1Z+q1)(Z2+p2Z+q2) 
then 

p1+ p2 = A3,       p1p2 + q1 + q2 = A2,       p1q2 + p2q1 = A1,       q1q2 = A0. 

 

Modified Algorithm 

Problem:  Given real coefficients A3, A2, A1, and A0 ,  find  Z1, Z2, Z3 and Z4 such that 

Z4 + A3Z3 + A2Z2 + A1Z + A0  =  (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Solution:  Calculate u1 as the greatest real solution of the resolvent cubic equation 

u3 − A2u2 + (A1A3 − 4A0)u + 4A0A2 − A1
2 − A0A3

2 = 0. 

g  =  { 
   1  if A1 − A3u1/2 > 0 
−1  otherwise                  

 

 p1 = A3/2 − √A3
2 /4 + u1 − A2 p2 = A3/2 + √A3

2 /4 + u1 − A2 
 

 q1 = u1/2 + g √u1
2/4 − A0 q2 = u1/2 − g √u1

2/4 − A0 

 

 Z1,2 = −p1/2  √p1
2/4 − q1 Z3,4 = −p2/2  √p2

2/4 − q2 

 
The NBS original algorithm is unnecessarily complicated and difficult to code.  The user 
is left to perform trial-and-error tests for two of the algorithm steps: 1) if all three 
solutions of the resolvent cubic equation are real, select u1 to produce real coefficients 
in the quadratic equations, and 2) in the two quadratic equations, choose the correct 
combination of signs to be used in the expressions for the coefficients.  The user faces 
the possibility of performing trial-and-error tests on three cubic-equation solutions and 
four sign combinations to arrive at the two correct quadratic equations. 
 
The modified algorithm is easy to code and satisfies all requirements of the original 
algorithm.  Choosing u1 as the greatest real solution of the resolvent cubic equation 
always provides real coefficients: p1, p2, q1, and q2.  The function g as defined in the 
modified algorithm assures that correct signs are selected. 
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Euler’s Method 

The radical in the Euler original algorithm 
does not imply the principal square root.  
Instead the user selects either square root 
for any two of the √rk .  The third √rk  is 

selected to satisfy √r1√r2√r3 = −b1/8.  The 

user only needs to check that the two sides of this equation have the same sign.  The 
resolvent cubic equation guarantees that the two sides have the same absolute value: 

 (r − r1)(r − r2)(r − r3)  =  r3 + (b2/2)r2 + [(b2
2 − 4b0)/16] r − b1

2/ 64  for all r 

      r1r2r3 = b1
2/ 64          |√r1√r2√r3| = |b1|/8. (3) 

 
The resolvent cubic equation sometimes has two solutions that are a complex conjugate 
pair.  The original algorithm then requires operations on complex numbers, but the 
modified algorithm does not.  In the modified algorithm, all constituents of the Tn 
formulas are real numbers, and the inner radicand, x2x3 + y2

2, is nonnegative. 

 
The modified algorithm’s Tn formulas may be expressed more simply as  

 T1,2 =  √r1   √r2 + r3 − 2√r2r3              T3,4  =  − √r1   √r2 + r3 + 2√r2r3 . (4) 

Solutions r2 = x2 + iy2 and r3 = x3 + iy3 of the resolvent cubic equation are real 
(y2 = y3 = 0), or they form a complex conjugate pair (x2 = x3¸ y2 = −y3 > 0).  In either 
case, the sum r2 + r3 equals x2 + x3, and the product r2r3 equals x2x3 + y2

2
.  

Original Algorithm 

Given:  Real coefficients  A3, A2, A1, and A0, 

Find:    Z1, Z2, Z3 and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  = 
 (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Calculation: C   = A3 / 4,        b2 = A2 − 6C2, 

 b1 = A1 − 2A2C + 8C3, 
 b0 = A0 − A1C + A2C2 − 3C4 

 Find the three solutions r1, r2, and r3 of the 
resolvent cubic equation: 

rk
3+ (b2/2) rk

2+ [(b2
2 − 4b0)/16] rk − b1

2/ 64 = 0. 

 

 

T1 = √r1 + √r2 + √r3 

T2 = √r1 − √r2 − √r3 

T3 = − √r1 + √r2 − √r3 

T4 = − √r1  − √r2 + √r3 

The signs for the √rk 
are selected so that  

√r1√r2√r3  =  −b1/8. 

Zn = Tn − C,    n = 1, 2, 3, 4 

Modified Algorithm 

Given:  Real coefficients  A3, A2, A1, and A0, 

Find:    Z1, Z2, Z3 and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  = 
 (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Calculation: C   = A3 / 4,        b2 = A2 − 6C2, 

 b1 = A1 − 2A2C + 8C3, 
 b0 = A0 − A1C + A2C2 − 3C4 

 Find the three solutions r1, r2, and r3 of the 
resolvent cubic equation: 

rk
3+ (b2/2) rk

2+ [(b2
2 − 4b0)/16] rk − b1

2/ 64 = 0. 

Solution r1 is the greatest real solution and 

r1  0.  Solutions r2 = x2 + iy2 and r3 = x3 + iy3 
are real (y2 = y3 = 0), or they form a complex 
conjugate pair (x2 = x3¸ y2 = −y3 > 0). 

 

 = 1 if b1 > 0,   = −1 otherwise. 

 T1,2 = √r1   √x2 + x3 − 2√x2x3 + y2
2 

 T3,4 = − √r1   √x2 + x3 + 2√x2x3 + y2
2 

where x2x3 + y2
2  0. 

Zn = Tn − C,    n = 1, 2, 3, 4 
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Van der Waerden’s Method 

Van der Waerden derived this method,[8, 

pp 190-192] and the DLMF presents it in 
algorithmic form. [9, §1.11(iii)] 
 
The algorithms are similar to the corresponding Euler algorithms.  Euler’s Tn formulas 
convert to Van der Waerden’s with the following substitutions:  

                             rk = −k/4,     xk = −xk/4,     yk = −yk/4,            k = 1, 2, 3. 

Substitute −k/4 for rk in Euler’s resolvent cubic equation and simplify to obtain Van 
der Waerden’s.  As with Euler, the Van der Waerden original algorithm requires 
operations on complex numbers, but the modified algorithm does not. 
 
The Tn formulas in the modified algorithm may be expressed more simply as 

 T1,2 = 
1

2
[√−1  √−2 − 3 − 2√23]          T3,4 = 

1

2
[−√−1  √−2 − 3 + 2√23] (5) 

Solutions 2 = x2 + iy2 and 3 = x3 + iy3 of the resolvent cubic equation are real 
(y2 = y3 = 0), or they form a complex conjugate pair (x2 = x3¸ −y2 = y3 > 0).  In 

either case, −2 − 3 = −x2 − x3, and 23 = x2x3 + y2
2 .

Original Algorithm 

Given:  Real coefficients  A3, A2, A1, and A0, 

Find:    Z1, Z2, Z3 and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  = 
 (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Calculation: C   = A3 / 4,        b2 = A2 − 6C2, 

 b1 = A1 − 2A2C + 8C3, 
 b0 = A0 − A1C + A2C2 − 3C4 

 Find the three solutions 1, 2, and 3 of the 
resolvent cubic equation: 

k
3  − 2b2k

2  + (b2
2 − 4b0)k + b1

2 = 0. 

 

T1  =  1

2
[   √−1 + √−2  + √−3 ] 

T2  =  1

2
[   √−1 −  √−2  −  √−3 ] 

T3  =  1

2
[− √−1 + √−2  −  √−3 ] 

T4  =  1

2
[− √−1 −  √−2  + √−3 ] 

The signs for the √−k are selected so that 

√−1 √−2 √−3  =  −b1. 

Zn = Tn − C,    n = 1, 2, 3, 4 

Modified Algorithm 

Given:  Real coefficients  A3, A2, A1, and A0, 

Find:    Z1, Z2, Z3 and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  = 
 (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

Calculation: C   = A3 / 4,        b2 = A2 − 6C2, 

 b1 = A1 − 2A2C + 8C3, 
 b0 = A0 − A1C + A2C2 − 3C4 

 Find the three solutions 1, 2, and 3 of the 
resolvent cubic equation: 

k
3  − 2b2k

2  + (b2
2 − 4b0)k + b1

2 = 0. 

Solution 1 is the least real solution and −1  0. 

Solutions  2 = x2 + iy2, and 3 = x3 + iy3 are 
real (y2 = y3 = 0), or they form a complex 
conjugate pair (x2 = x3¸ −y2 = y3 > 0). 

 

 = 1 if b1 > 0,   = −1 otherwise. 

T1,2 = 
1

2
[   √−1  √−x2 − x3 − 2√x2x3 + y2

2 ] 

T3,4 = 
1

2
[−√−1  √−x2 − x3 + 2√x2x3 + y2

2 ] 

where x2x3 + y2
2     0. 

Zn = Tn − C,   n = 1, 2, 3, 4 
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Checking the Solutions 
The set of calculated solutions Z1, Z2, Z3 and Z4 of the quartic equation can be checked 
against the requirement that 

Z4 + A3Z3 + A2Z2 + A1Z + A0  =  (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4)   for all Z. 

Expand and simplify the right side of this equation, and then equate each coefficient to 
the corresponding coefficient on the left side to obtain 

A3  =  −(Z1+Z2+Z3+Z4) 

A2  =  Z1Z2+Z1Z3+Z1Z4+Z2Z3+Z2Z4+Z3Z4 

A1  =  −(Z1Z2Z3+Z1Z2Z4+Z1Z3Z4+Z2Z3Z4) 

A0  =  Z1Z2Z3Z4 . 

Express each Zn as the sum of its real and imaginary components: Zn = Xn + iYn.  
Solutions Z1 and Z2 are either real (Y1 = Y2 = 0) or they form a complex conjugate pair 
(X1 = X2, Y1 = −Y2 > 0).  Solutions Z3 and Z4 are either real (Y3 = Y4 = 0) or they form a 
complex conjugate pair (X3 = X4, Y3 = −Y4 > 0).  We now have: 

A3 = −(X1+X2+X3+X4) 

A2 = X1X2+Y1
2+(X1+X2)(X3+X4)+X3X4+Y3

2 

A1 = −[(X1X2+Y1
2)(X3+X4) + (X3X4+Y3

2)(X1+X2)] 

A0 = (X1X2+Y1
2)(X3X4+Y3

2). 

Valid solutions must reproduce the input coefficients according to these check 
equations. 
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Algorithm Suitability for General Calculation 
Each of the modified algorithms presented here is suitable for general calculation.  Each 
provides:  

• stable analytic solutions for any combination of real coefficients, 
• formulas that convert easily to code, and 
• calculation with real numbers only. 

The choice of one of these algorithms over the others is therefore a matter of personal 
preference. 
 
For introducing students to quartic equations, instructors may prefer Ferrari’s method.  
It is the earliest analytic method, and its derivation relies primarily on the technique of 
completing the square with which the students should be familiar.  Students are thus 
likely to find its derivation the easiest to understand and remember.  Moreover, the 
same derivation produces both the common algorithm and the modified algorithm. 
 
The NBS modified algorithm has the advantage of not requiring the intermediate 
depressed quartic equation. 
 
The Euler and Van der Waerden original algorithms are also suitable for users who 
have the ability to perform operations on complex numbers. 
 
The Ferrari common algorithm and the Descartes original algorithm are not 
recommended for general calculation because they can become computationally 
unstable.  Even so, they are mathematically useful.  In the section below, the Ferrari 
common algorithm helps demonstrate the mathematical equivalence of the NBS 
algorithm to the other algorithms presented here.  Heikkinen[10] uses the unstable 
Descartes original algorithm to derive his stable algorithm for calculating a position’s 
geodetic coordinates (longitude, latitude, altitude) given the position’s earth-centered, 
earth-fixed rectangular coordinates on the earth ellipsoid. 
 
The NBS original and modified algorithms are not two different algorithms in the same 
way that the Ferrari common and modified algorithms are different from each other.  
The NBS original is not even an algorithm in the sense of a defined sequence of logical 
and mathematical operations.  It is rather a set of detailed requirements.  An algorithm 
which meets all of the requirements can solve the general quartic equation correctly.  
The modified version is a true algorithm that meets all of the requirements. 
 
Mathematical Equivalence of the Algorithms 
Although the algorithms here vary in their suitability for general calculation, they are all 
mathematically equivalent to each other.  This of course must be true because they all 
produce the correct quartic-equation solutions in theory.  This section demonstrates 
equivalence by showing that any of the algorithms presented can be converted to any of 
the others.  The NBS original algorithm is excluded because it is not a true algorithm, as 
just pointed out.  From this point on, the term “NBS algorithm” refers to the NBS 
modified algorithm.  
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The NBS algorithm requires special treatment because it is the only algorithm 
considered here that solves the general quartic equation directly.  We refer to the other 
algorithms as the depressed algorithms because they solve the equivalent depressed 
quartic equation and then shift the results to obtain solutions of the general quartic 
equation.  Our demonstration first shows the mathematical equivalence of all of the 
depressed algorithms and then addresses their equivalence to the NBS algorithm. 
 
The Depressed Algorithm Summary Table below lists the resolvent cubic equations and 
Tn formulas for all of the depressed algorithms. 
 
Principal-Square-Root Convention for Radicals 
The table uses the principal-square-root convention for radicals, so the Tn formulas in 
the Euler and Van der Waerden original algorithms are recast accordingly.  This is 

accomplished in the Euler original algorithm by replacing √r3 with −s√r3 where  

  = {
   1    if b1 > 0
−1  otherwise

 and s = {   1   if √r1√r2√r3    0

−1             otherwise.   
 (6) 

The definitions of these special functions and equation (3) above imply that 

 b1 = |b1|              and                 √r1√r2√r3  =  s|√r1√r2√r3|  =  s|b1|/8. 

The Euler original Tn formulas change 

FROM: T1,2  =  √r1   (√r2 +  √r3 ) and T3,4  =  − √r1   (√r2 −  √r3 ) 

TO: T1,2  =  √r1   (√r2 − s √r3 ) and T3,4  =  − √r1   (√r2 + s √r3 ). (7) 

In this revised formulation, the product of terms for each Tn is 

−s√r1√r2√r3  =  −s2|b1|/8  =  −|b1|/8  =  − b1/8 

as required by the Euler original algorithm.  The Van der Waerden original algorithm is 
recast in a corresponding fashion. 
 

The function s in (6) accommodates the condition √r1√r2√r3 < 0, which occurs when 

one of the rk, say r1, is positive real and the other two rk are negative real: 

√r2 = i√|r2| ,  √r3 = i√|r3|              √r2√r3  =  −√|r2|√|r3|  =  −√r2r3  <  0. 

 
For the Euler and Van der Waerden modified algorithms, the table uses the simplified 
Tn formulas from (4) and (5). 
 
Greatest Real Solution of the Resolvent Cubic Equations 
The algorithm summary table applies the following additional convention.  For 
calculating the Tn, each algorithm except Van der Waerden employs the greatest real 
solution of its resolvent cubic equation.  This solution is m in Ferrari, y2 in Descartes, 
and r1 in Euler.  Van der Waerden uses the least real solution 1 of its resolvent cubic 
equation.  This convention allows a direct comparison of all the algorithms. 
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DEPRESSED ALGORITHM SUMMARY TABLE 

Given real coefficients b2, b1, and b0, find T1, T2, T3, and T4 such that 

(T − T1) (T − T2) (T − T3) (T − T4)  =  T4 + b2T2 + b1T + b0 for all T. 

Definition:   = 1 if b1 > 0,   = −1 otherwise. 

Radical  denotes the principal square root for all algorithms. 

Ferrari’s 
Method 

m is greatest real solution of:       m3 + b2 m2 + (b2
2/4 − b0)m − b1

2/8  =  0,   and  m  0. 

Common Algorithm (m > 0) * 

T1,2  =    √m/2  √−m/2 − b2/2 − b1/(2√2m ) 

T3,4  = −√m/2  √−m/2 − b2/2 + b1/(2√2m ) 

Modified Algorithm 

R =  √m2 + b2m + b2
2/4 − b0 

T1,2  =     √m/2    √−m/2 − b2/2 − R 

T3,4  =  −√m/2    √−m/2 − b2/2 + R 

Descartes’ 
Method 

y2 is greatest real solution of:   y6 + 2b2 y4 + (b2
2 − 4b0)y2 − b1

2  =  0,  and  y  0. 

Original Algorithm (y2 > 0) * 

T1,2  =    y/2  √−y2/4 − b2/2 − b1/(2y) 

T3,4  = −y/2 √−y2/4 − b2/2 + b1/(2y) 

Modified Algorithm 

R =  √y4/4 + (b2/2)y2 + b2
2/4 − b0 

T1,2  =    y/2  √−y2/4 − b2/2 − R 

T3,4  = −y/2  √−y2/4 − b2/2 + R 

Euler’s 
Method 

r1 is the greatest real solution of:    rk
3+ (b2/2) rk

2+ [(b2
2 − 4b0)/16] rk − b1

2/ 64 = 0,  and   r1  0. 

Solutions r2 = x2 + iy2 and r3 = x3 + iy3 are real (y2 = y3 = 0), or they form a complex conjugate 
pair (x2 = x3¸ y2 = −y3 > 0). 

Original Algorithm 

T1,2  =     √r1   (√r2 − s √r3 ) 

T3,4  =  − √r1   (√r2 + s √r3 ) 

s = 1 if √r1√r2√r3   0,    s = −1 otherwise. 

Modified Algorithm 

T1,2  =    √r1   √r2 + r3 − 2√r2r3 

T3,4  = − √r1   √r2 + r3 + 2√r2r3 

Van der 
Waerden 
Method 

1 is the least real solution of:     k
3  − 2b2k

2  + (b2
2 − 4b0)k + b1

2 = 0,    and   −1  0. 

Solutions  2 = x2 + iy2, and 3 = x3 + iy3 are real (y2 = y3 = 0), or they form a complex 
conjugate pair (x2 = x3¸ −y2 = y3 > 0). 

Original Algorithm 

T1,2  =  1

2
[   √−1  (√−2  −  s √−3 )]  

T3,4  =  1

2
[− √−1  (√−2 +  s √−3 )] 

s = 1 if √−1√−2√−3   0,    s = −1 otherwise. 

Modified Algorithm 

T1,2 = 
1

2
[   √−1  √−2 − 3 − 2√23] 

T3,4 = 
1

2
[−√−1  √−2 − 3 + 2√23] 

* Tn formulas for the Ferrari common algorithm and the Descartes original algorithm for the case 
m = y2 = 0 are 

 T1,2  =   √−b2/2 + √b2
2/4 − b0  T3,4  =    √−b2/2 − √b2

2/4 − b0 . 
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Resolvent Cubic Equations in the Depressed Algorithms 
In the table above, each resolvent cubic equation converts to every other by applying 
the transformation 
 2m = y2 = 4rk = −k 

and simplifying to standard form.  The greatest real solutions in Ferrari, Descartes, and 
Euler and the least real solution in Van der Waerden are related by 

 2m = y2 = 4r1 = −1.  (8) 

The algorithms use these values to calculate the Tn. 
 
The greatest real solution m of the Ferrari resolvent cubic equation is nonnegative, as 
we now demonstrate.  The resolvent cubic equation is 

 m3 + b2 m2 + (b2
2/4 − b0)m − b1

2/8  =  0. 

The constant coefficient, −b1
2/8, is less than or equal to zero.  If b1 = 0, then m = 0 is a 

solution.  Otherwise, the cubic on the left side of the equation is negative at m = 0, but 
the cubic must eventually increase to zero as m increases to a sufficiently large positive 
value.  This m value is a positive real solution.  Thus m  0, and by (8) we have 

 2m = y2 = 4r1 = −1    0.  (9) 

These values that are used to calculate the Tn are all nonnegative. 
 
Tn Formulas for Ferrari and Descartes Algorithms 
Convert the Ferrari common Tn formulas for m > 0 to the Ferrari modified Tn formulas 
by solving the resolvent cubic equation for b1

2/(8m) and taking the square root. 

m3 + b2 m2 + (b2
2/4 − b0)m − b1

2/8  =  0  b1
2/(8m)  =  m2 + b2 m + b2

2/4 − b0 

  b1/(2√2m )  =   √m2 + b2m + b2
2/4 − b0   =  R (m > 0) 

 where    = 1 if b1 > 0,   = −1 otherwise 

The term b1/(2√2m ) in the common Tn formulas is replaced with R to produce the 
Ferrari modified Tn formulas. 
 

The case m = 0 implies that b1 = 0,  = −1, and R = − √b2
2/4 − b0 .  The Ferrari 

modified algorithm produces the same formula for Tn as the Ferrari common algorithm 
for m = 0.  The Ferrari common and modified algorithms are therefore mathematically 
equivalent to each other for all m. 
 
The transform m = y2/2 from (9) converts the Ferrari common and modified Tn 
formulas to the corresponding formulas in the Descartes algorithms.  Thus, the Ferrari 
and Descartes algorithms convert to each other and are all equivalent to each other. 
 
Tn Formulas for Euler and Van der Waerden Algorithms 
Using the principal-square-root convention for radicals, the Tn formulas for the Euler 
original algorithm are 
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 T1,2  =     √r1   (√r2 − s √r3 ) T3,4  =  − √r1   (√r2 + s √r3 ) (10) 

where 

  = {
1    if b1 > 0

−1  otherwise
 and s = {   1   if √r1√r2√r3    0

−1             otherwise   
, (11) 

and where r1, r2, and r3 are solutions of the resolvent cubic equation 

 rk
3+ (b2/2) rk

2+ [(b2
2 − 4b0)/16] rk − b1

2/ 64 = 0. 

By (9), the greatest real solution r1 is nonnegative, as is √r1: 

 r1  0  √r1   0. (12) 

Equation (3) shows that r1r2r3 = b1
2/64  0.  Therefore, 

 r1  0    and    r1r2r3 = b1
2/64   0        r2r3  0. (13) 

The product r2r3 is a nonnegative real number.  Thus r2 = x2 + iy2 and r3 = x3 + iy3 are 
real (y2 = y3 = 0), or they form a complex conjugate pair (x2 = x3,  y2 = −y3).  If real, then 
they cannot have opposite signs.  This restriction on r2 and r3 implies that each 
parenthetical expression in (10) is either real or pure imaginary. 
 
Conversion of the Tn formulas in (10) to those in the Euler modified algorithm starts by 
replacing each parenthetical expression with the radical of its square: 

T1,2  =  √r1   √r2 + r3 − 2s√r2√r3 T3,4= − √r1   √r2 + r3 + 2s√r2√r3. (14) 

T1 and T2 in (14) each have the same value as in (10) unless √r2 − s √r3 happens to be 

either negative real or negative imaginary.  In that case, T1 in (10) is T2 in (14) and T2 in 

(10) is T1 in (14).  T3 and T4 are correspondingly affected by the value of √r2 + s √r3. 

 
As an option to prevent the Tn from flipping values between (10) and (14), use the 
following convention: select r2 = x2 + iy2 and r3 = x3 + iy3 so that |x2|  |x3| and 
y2 = −y3  0.  The convention assures that the parenthetical expressions in (10) are 
either nonnegative real or nonnegative imaginary.  The convention does not affect (14), 
which is symmetrical with respect to r2 and r3. 
 
Equation (12) implies that the formula for s in (11) simplifies to 

 s = {   1   if √r2√r3    0

−1       otherwise   
  √r2√r3  =  s|√r2√r3|  =  s|√r2r3|. 

This result and (13) imply that 

s√r2√r3  =  s2 |√r2r3|  =  |√r2r3|  =  √r2r3 . 

The Tn formulas in (14) convert to the simplified Tn formulas in the Euler modified 
algorithm. 

 T1,2  =  √r1   √r2 + r3 − 2√r2r3            T3,4= − √r1   √r2 + r3 + 2√r2r3. (15) 
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The Euler original and modified algorithms are therefore mathematically equivalent. 
 
The transform rk = −k/4 converts the original and modified Euler Tn formulas to the 
corresponding formulas in the Van der Waerden algorithms.  Thus, the Euler and Van 
der Waerden algorithms are all equivalent to each other. 
 
Equivalence of Tn Formulas from All Eight Depressed Algorithms 
So far, we have the eight depressed algorithms grouped into two sets of equivalent 
algorithms: 

Set 1: Ferrari common and modified, Descartes original and modified 
Set 2: Euler original and modified, and Van der Waerden original and modified. 

We show that the two sets are equivalent by converting the Euler modified Tn formulas 
from Set 2 to the Ferrari modified Tn formulas from Set 1.  Solutions rk of the Euler 
resolvent cubic equation must satisfy the requirement: 

(r − r1) (r − r2) (r − r3)  =  r3 + (b2/2)r2 + [(b2
2 − 4b0)/16] r − b1

2/ 64  for all r. 

Expand and simplify the left side, then equate coefficients with the corresponding 
coefficients on the right.  Results for the quadratic and linear coefficients are: 

−(r1 + r2 + r3)  =  b2/2                       r1r2 + r1r3 + r2r3  =  (b2
2 − 4b0)/16. 

Solve these two equations for r2 + r3 and for r2r3 as functions of r1. 

r2 + r3  =  −r1 − b2/2               r2r3  =  r1
2 + (b2/2)r1 + (b2

2 − 4b0)/16 

Substitute these two expressions into the Euler modified Tn equations and simplify. 

T1,2  =    √r1   √−r1 − b2/2 − √4r1
2 + 2b2r1 + b2

2/4 − b0 

T3,4= − √r1   √−r1 − b2/2 + √4r1
2 + 2b2r1 + b2

2/4 − b0 

Apply the transform r1 = m/2 from (9) to produce the Ferrari modified Tn formulas:  

T1,2  =    √m/2   √−m/2 − b2/2 − R                  T3,4= − √m/2   √−m/2 − b2/2 + R 

where R = √m2 + b2m + b2
2/4 − b0 . 

 
The Euler modified algorithm from Set 2 converts to the Ferrari modified algorithm 
from Set 1.  Thus, all eight depressed algorithms comprising the two sets are 
mathematically equivalent to each other. 
 
Equivalence of the NBS Algorithm to the Depressed Algorithms 
The eight depressed algorithms are also mathematically equivalent to the NBS 
algorithm as now demonstrated by constructing the NBS algorithm from the Ferrari 
algorithms. 
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The NBS algorithm is related to the Ferrari algorithms through u1, the greatest real 
solution of the NBS resolvent cubic equation.  The NBS algorithm provides u1 in terms 
of Z1, Z2, Z3, and Z4 as follows.  The formulas for q1 and q2 show that q1 + q2 = u1, and 
the Zn formulas show that Z1Z2 = q1 and Z3Z4 = q2.  This demonstration therefore 
defines u1 as 
 u1 = Z1Z2 + Z3Z4 . (16) 
 
The Ferrari starting point includes 1) the calculation formulas for C, b2, b1, and b0, 
2) the Zn-to-Tn transform, 3) the resolvent cubic equation, and 4) the Tn formulas: 

C = A3 / 4, b2 = A2 − 6C2, b1 = A1 − 2A2C + 8C3, b0 = A0 − A1C + A2C2 − 3C4, (17) 

 Zn = Tn − C  Tn = Zn + C,         n = 1, 2, 3, 4, 

 m3 + b2 m2 + (b2
2/4 − b0)m − b1

2/8  =  0, (18) 

 T1,2  =     √m/2    √−m/2 − b2/2 − R, (19) 

 T3,4  =  −√m/2    √−m/2 − b2/2 + R, (20) 

where R =  √m2 + b2m + b2
2/4 − b0, (21) 

 R = b1/(2√2m ) (m > 0), (22) 

  = 1 if b1 > 0,   = −1 otherwise, (23) 

and where m  0 is the greatest real solution of (18). 
 
Equations (19) and (20) provide the following preliminary relationships. 

 T1 + T2  =     √2m (24) 

 T3 + T4  =  −√2m (25) 

 T1T2 = m + b2/2 + R (26) 

 T3T4 = m + b2/2  −  R (27) 
 
Relate u1 to m by substituting Zn = Tn − C and (24) through (27) into (16) as follows.  

u1  =  (T1 − C)(T2 − C) + (T3 − C)(T4 − C)  =  T1T2 + T3T4 − (T1+T2+T3+T4)C + 2C2 

u1  =  2m + b2 + 2C2                                                     2m = u1 − b2 − 2C2 (28) 
 
Convert the resolvent cubic equation of Ferrari to that of NBS as follows.  Multiply (18) 
through by 8 and write as 

 (2m)3 + 2b2 (2m)2 + (b2
2 − 4b0)(2m) − b1

2  =  0. 

From (28), replace 2m with u − b2 − 2C2.  Substitute the expressions in (17) for C, b2, b1, 
and b0.  Then simplify to obtain the NBS resolvent cubic equation. 

 u3 − A2u2 + (A1A3 − 4A0)u + 4A0A2 − A1
2 − A0A3

2 = 0 (29) 
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Construct the NBS Zn formulas from the Ferrari Tn formulas as follows.  Calculate the 
quantities below on the left by using (24) through (27). 

 (T1 + T2)2/4 − T1T2  =  −m/2 − b2/2 −  R 

 (T3 + T4)2/4 − T3T4  =  −m/2 − b2/2 + R 

The expressions on the right are the radicands in the Tn formulas (19) and (20).  These 
Tn formulas thus have the form: 

 T1,2 =   (T1 + T2)/2 ±√(T1 + T2)2/4 − T1T2 

 T3,4 =   (T3 + T4)/2 ±√(T3 + T4)2/4 − T3T4. 
 
Obtain the corresponding formulas for the Zn by substituting Tn = Zn + C and then 
simplifying. 

 Z1,2 =   (Z1 + Z2)/2 ±√(Z1 + Z2)2/4 − Z1Z2 

 Z3,4 =   (Z3 + Z4)/2 ±√(Z3 + Z4)2/4 − Z3Z4 

These become the NBS Zn formulas, 

 Z1,2 = −p1/2  √p1
2/4 − q1 ,            Z3,4 = −p2/2  √p2

2/4 − q2 (30) 

where 
 p1 = − (Z1+Z2) p2 = − (Z3+Z4)  (31) 

and q1 = Z1Z2 q2 = Z3Z4.  (32) 
 
Find the NBS calculation formulas for p1 and p2 by substituting Tn − C for the Zn in (31), 
and then apply (24) or (25), (28), and (17). 

p1  =  − (Z1+Z2) = 2C − (T1 + T2)  =  2C − √2m  =  2C − √u1 − b2 − 2C2 
 

 p1 = A3/2 − √A3
2 /4 + u1 − A2               p2 = A3/2 + √A3

2 /4 + u1 − A2  (33) 
 
To find the NBS calculation formulas for q1 and q2, start by substituting Tn − C for the Zn 
in (32), and then apply (24) through (28). 

q1 = Z1Z2 = (T1 − C)(T2 − C) =  T1T2 − (T1 + T2)C + C2  =  m + b2/2 + R − C√2m + C2 

q2 = Z3Z4 = (T3 − C)(T4 − C) =  T3T4 − (T3 + T4)C + C2  =  m + b2/2 − R + C√2m + C2 

or q1,2 = m + b2/2 + C2  (R − C√2m) (34) 

For the case m > 0, apply the formula R = b1/(2√2m ) from (22).  Then apply (28) for 

2m.  

q1,2  =  m + b2/2 + C2   
b1−4Cm

2√2m
    =    u1/2    

b1−2Cu1+2Cb2+4C3

√4(u1−b2−2C2)
         (m > 0) 

Apply (17) for C, b1, and b2.  
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 q1,2 = u1/2  
A1−A3u1/2

√4(u1−A2+A3
2/4)

 (m > 0) 

Use the NBS definition 

 g  =  { 
  1   if A1 − A3u/2 > 0 

−1   otherwise                  
 (35) 

so that 

  A1 − A3u1/2 = g|A1 − A3u1/2|  =  g√(A1 − A3u1/2)2 

and q1,2 becomes  

 q1,2   =   u1/2  g√
(A1−A3u1/2)

2

4(u1−A2+A3
2

/4)
     =     u1/2   g√N/D (m > 0) (36) 

where N = (A1 − A3u1/2)2      and       D = 4(u1 − A2 + A3
2 /4). 

 
The quotient N/D is  Q = u1

2/4 − A0  because DQ = N, which fact we now demonstrate. 

 DQ  =  4(u1 − A2 + A3
2 /4)(u1

2/4 − A0)  =  (u1 − A2 + A3
2 /4)(u1

2 − 4A0) 

 DQ  =  u1
3 − A2u1

2 + A3
2 u1

2/4 − 4A0u1 + 4A0A2 − A0A3
2  

Subtract zero in the form of the left side of (29) with solution u1 replacing u.  The 
expression for DQ becomes 

 DQ  =  A1
2 − A1A3u1 + A3

2 u1
2/4  =  (A1 − A3u1/2)2  =  N. 

DQ = N, so the quotient N/D is Q = u1
2/4 − A0.  Thus, when m is greater than 0 the 

formulas for q1 and q2 in (36) become those of the NBS algorithm. 

 q1,2   =   u1/2  g√u1
2/4 − A0 (m > 0) (37) 

 
The case m = 0 produces this same expression for q1,2 as now shown.  Equations (34) 
and (21) give 

 q1,2 = b2/2 + C2   √b2
2/4 − b0 (m = 0). (38) 

The resolvent cubic equation (18) implies that b1 = 0, and from (23),  = −1.  The 
expression for b1 in (17) shows that 

 A1 = 2A2C − 8C3  =  (A2 − A3
2 /4)A3/2 (m = 0). (39) 

This expression and those for C, b2, and b0 in (17) convert q1,2 in (38) to 

 q1,2 = (A2 − A3
2 /4)/2  (−1)√(A2 − A3

2 /4)2/4 − A0 (m = 0). (40) 

Equations (17), (28), (39), and (35) produce the following. 

 u1  =  b2 + 2C2  =  A2 − A3
2 /4,        A1−A3u1/2 = 0,           g  =  −1 (m = 0) 

The expression for q1,2 in (40) may thus take the form of (37).  

 q1,2   =   u1/2  g√u1
2/4 − A0 (m = 0) (41) 
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Together, (37) and (41) give the NBS q1 and q2 formulas for all m  0. 

 q1   =   u1/2 + g√u1
2/4 − A0 q2   =   u1/2 − g√u1

2/4 − A0 (42) 

 
This completes the construction of the NBS algorithm from the Ferrari algorithms.  The 
NBS algorithm finds u1 as the greatest real solution of its resolvent cubic equation (29), 
and then solves (35), (33), (42), and (30) in succession to find solutions Zn of the 
general quartic equation.  By constructing the NBS algorithm from the Ferrari 
algorithms, we have shown that the NBS algorithm is mathematically equivalent to the 
Ferrari algorithms.  Because the Ferrari algorithms are mathematically equivalent to all 
of the algorithms described here, so is the NBS algorithm. 
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Derivation 1:  Depressed Quartic Equation 
The algorithm inputs are four real coefficients A3, A2, A1, and A0, and the outputs are the 
four values Z1, Z2, Z3 and Z4 such that 

Z4 + A3Z3 + A2Z2 + A1Z + A0  = (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. 

The outputs are thus the four solutions of the general quartic equation 

 Zn
4

 + A3 Zn
3

 + A2 Zn
2

 + A1 Zn + A0 = 0, n = 1, 2, 3, 4. (1-1) 
 
Except for the NBS method, the algorithms solve the equivalent depressed quartic 
equation 
 Tn

4
 + b2Tn

2
 + b1Tn + b0  =  0, n = 1, 2, 3, 4.  (1-2) 

 
The first derivation applies a shift constant C and the transform 

 Zn = Tn − C  (1-3) 

to convert (1-1) to (1-2).  Substitute (1-3) into (1-1).  Expand and simplify to a quartic 
equation for Tn in standard form.  Then equate the resulting coefficients to the 
corresponding coefficients in (1-2).  Solve for C, b2, b1, and b0.  The result is 

C = A3/4,      b2 = A2 − 6C2,      b1 = A1 − 2A2C + 8C3,      b0 = A0 − A1C + A2C2 − 3C4. (1-4) 

 
Except for the NBS method, the algorithms calculate C, b2, b1, and b0 in (1-4), solve (1-2) 
for the Tn, and apply (1-3) to compute solutions Zn of (1-1). 
 
Derivation 2:  Ferrari Algorithms 
Starting with b2, b1, and b0 from (1-4) as given, Ferrari (as described by Cardano[1, pp 237-

253]) finds the four solutions Tn of the depressed quartic equation (1-2).  Ferrari applies 
an adjustable parameter m to convert (1-2) into the equality of two perfect squares 
 A2 = B2            A2 − B2 = 0. 
A is quadratic and B is linear in Tn.  This converted quartic equation factors into two 
easily-solved quadratic equations: 
 A−B = 0    and    A+B = 0. 
 
The first step is to add  b2

2/4 − b1Tn − b0  to both sides of (1-2) to produce a perfect-
square quartic on the left side. 

 (Tn
2 + b2/2)2  =  b2

2/4 − b1Tn − b0 (2-1) 

The left side remains a perfect square if m is added to  Tn
2+b2/2 inside the parentheses.  

Do this by adding 2m(Tn
2 + b2/2) + m2 to both sides of (2-1).  Then express the right 

side as a standard-form quadratic in Tn. 

 (Tn
2 + b2/2 + m)2  =  2mTn

2 − b1Tn + (m2 + b2m + b2
2/4 − b0) (2-2) 

This equation is valid for all values of m. 
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The quadratic on the right side of (2-2) is a perfect square if its discriminant is zero.  
(The discriminant of quadratic  ax2 + bx + c  is  b2 − 4ac.)  Setting the discriminate to 
zero produces 

(−b1)2 − 4(2m)(m2 + b2m + b2
2/4 − b0)  =  −8m3 − 8b2m2 − 2(b2

2−4b0)m + b1
2  = 0. 

Divide through by −8 to obtain Ferrari’s resolvent cubic equation: 

 m3 + b2m2 + (b2
2/4−b0)m − b1

2/8  = 0. (2-3) 

Any solution m of (2-3) makes the right side of (2-2) a perfect square B2.  To avoid 
complex-number operations, choose m as a nonnegative real solution. 

  m  0   
 
Such a solution always exists because the constant coefficient, −b1

2/8, is less than or 
equal to zero. 
 
With the nonnegative real solution m, equation (2-2) takes on the desired form A2 = B2: 

 (Tn
2 + b2/2 + m)2  =  (√2m Tn − R)

2
 (2-4) 

where A = Tn
2 + b2/2 + m     and     B = √2m Tn − R (2-5) 

 R2  =  m2 + b2m + b2
2/4 − b0, (2-6) 

and 2√2m R  =  b1.  (2-7) 
 
Equations (2-6) and (2-7) provide two different ways to solve for R.  Equation (2-7) 
shows that R must have the same sign as b1 if m > 0.  If m = 0, then the sign of R is 
arbitrary in (2-4) through (2-7), but a negative R value will prove convenient later.  We 
may therefore define the function 

  = {
1    if b1 > 0

−1  otherwise
 , (2-8) 

and write 
 b1 = |b1|          and             R = |R|. (2-9) 

Solving (2-7) for R produces 

 R  =  b1/(2√2m),      m > 0. (2-10) 

Equations (2-6) and (2-9) imply that 

 R =  √m2 + b2m + b2
2/4 − b0 . (2-11) 

For the case m > 0, (2-10) guarantees that R is a real number, so the radicand in (2-11) 
must be nonnegative. 
 m2 + b2m + b2

2/4 − b0   0,     m > 0 (2-12) 
 
With R from either (2-10) or (2-11), we proceed to factor quartic equation (2-4) into 
the two quadratic equations A − B = 0 and A + B = 0 using A and B from (2-5). 
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Tn
2 − √2m Tn + b2/2 + m + R  =  0 Tn

2 + √2m Tn + b2/2 + m − R  =  0 (2-13) 

The solutions are: 

T1,2 = √m/2  √−m/2 − b2/2 − R T3,4 = −√m/2  √−m/2 − b2/2 + R . (2-14) 

 
The transform Zn = Tn − C then produces solutions of the general quartic equation. 

These are the Zn formulas in the Ferrari modified algorithm. 
 
The Ferrari common Zn formulas substitute (2-10) for R into this result for the case 
m > 0. 

 
Consider now the case m = 0.  Equation (2-7) implies that b1 must also be zero.  The 
depressed quartic equation (1-2) becomes a quadratic equation in Tn

2 with solutions  

Tn
2  =  −b2/2  √b2

2/4 − b0 . 

Take the square root of both sides and apply Zn = Tn − C to obtain the Ferrari common 
Zn formulas for the case m = 0. 

 
These formulas match the results of the Ferrari modified Zn formulas in (2-15) for 
m = 0.  Equations (2-7), (2-8), and (2-11) show that m = 0    b1 = 0     = −1    

R = − √b2
2/4 − b0    Zn formulas in (2-15) for m = 0 match those in (2-17).  

 
If the inner integrand b2

2/4 − b0 in (2-17) is less than zero, then the Zn calculation 
requires taking square roots of complex numbers.  The following paragraph 
demonstrates that this situation is avoided by using (2-17) only if the greatest real 
solution of the resolvent cubic equation is m = 0.  If some other real solution m > 0 
exists, then it should be used in (2-15) or (2-16) to calculate the Zn. 

Z1,2  =     √m/2 − C   √−m/2 − b2/2 − R 
(2-15) 

Z3,4  =  −√m/2  − C   √−m/2 − b2/2 + R 

(Ferrari Modified Algorithm)  

Z1,2  =      √m/2 − C  √−m/2 − b2/2 − b1/(2√2m ) 

(m > 0)     (2-16) 

Z3,4  =  −√m/2  − C  √−m/2 − b2/2 + b1/(2√2m ) 

(Ferrari Common Algorithm, m > 0)  

Z1,2  =  −C  √−b2/2 + √b2
2/4 − b0 

(m = 0)           (2-17) 

Z3,4  =  −C  √−b2/2 − √b2
2/4 − b0 

(Ferrari Common Algorithm, m = 0)  
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Consider the case that m = 0 is the greatest real solution of the resolvent cubic equation 
(2-3).   A solution m = 0 implies that b1 = 0.  The resolvent cubic equation (2-3) is 
therefore 

m3 + b2m2 + (b2
2/4−b0)m  = m(m2 + b2m + b2

2/4 − b0) = 0 

with solutions 0 and −b2/2  √b0 .  If b0  0, then these last two solutions are real and, 

by assumption, less than or equal to zero. 

If b0  0, then  −b2/2+√b0    0        √b0    b2/2        b0    b2
2/4        b2

2/4 − b0    0. 

Otherwise, b0 is negative, which implies that b2
2/4 − b0  0.  Therefore,  

  b2
2/4 − b0  0  provided no real m  0 exists. (2-18) 

This result assures that (2-17) in the common algorithm operates on real numbers only 
when the greatest real solution of the resolvent cubic equation (2-3) is m = 0. 
 
The modified algorithm applies (2-18) as well.  The radicand of R in (2-11) is  b2

2/4 − b0 
when m = 0.  Therefore (2-11), (2-12), and (2-18) together imply that the radicand of R 
is nonnegative provided that real m > 0 is used if it exists. 

 m2 + b2m + b2
2/4 − b0    0  provided real m  0 is used if it exists. (2-19) 

 
This concludes the derivation.  Its results are summarized as follows. 

• Given coefficients b2, b1, and b0 of the depressed quartic equation (1-2), solve the 
resolvent cubic equation (2-3).  Use a real solution m  0 if it exists.  Otherwise, 
use m = 0. 

 

• For the common algorithm, calculate the Zn using (2-16) for m > 0 or (2-17) for 
m = 0.  Inequality (2-18) assures that (2-17) operates on real numbers only. 

 

• For the modified algorithm, calculate  using (2-8), R using (2-11), and the Zn 
using (2-15).  By using a real m  0 if it exists, the inequality (2-19) assures that R 
is real and that (2-15) operates on real numbers only. 

 
Derivation 3:  Descartes Algorithms 
The two versions of the Descartes algorithm are similar to the corresponding versions 
of the Ferrari algorithm.  The Ferrari formulas for Zn become the corresponding 
Descartes formulas by substituting y2/2 for m and positive y for √y2.    Substitute  y2/2 
for m in the Ferrari resolvent cubic equation (2-3) and multiply through by 8 to obtain 
the Descartes resolvent cubic equation. 

 y6 + 2b2 y4 + (b2
2 − 4b0)y2 − b1

2  =  0 (3-1) 
 
For the case m = y2/2 > 0, the two quadratic equations in (2-13) and their solutions in 
(2-14) for Ferrari convert to those for Descartes by substituting (2-10) for R, y2/2 for 
m, and positive y for √y2. 
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Tn
2 − yTn + (y2 + b2 + b1/y)/2 = 0 

Tn
2 + yTn + (y2 + b2 − b1/y)/2 = 0 

(y2 > 0) (3-2) 

T1,2 = y/2  √−y2/4 − b2/2 − b1/(2y) 

T3,4 = −y/2  √−y2/4 − b2/2 + b1/(2y) 
(y2 > 0)  

These Tn formulas give the solutions of the depressed quartic equation. 

 Tn
4

 + b2Tn
2

 + b1Tn + b0  =  0, n = 1, 2, 3, 4 (3-3) 

Rather than deriving the Tn solutions, Descartes simply asserts that the solutions Tn of 
the two quadratic equations (3-2) are the same as the four solutions of the depressed 
quartic equation (3-3) provided that y2 is a positive real solution of the resolvent cubic 
equation (3-1).[5, p 184] 
 
The following derivation verifies Descartes’ assertion.  Form the product of the two 
quadratic equations in (3-2). 

[Tn
2 − yTn + (y2 + b2 + b1/y)/2][Tn

2 + yTn + (y2 + b2 − b1/y)/2] = 0 

Expand and simplify to obtain 

 Tn
4

 + b2Tn
2

 + b1Tn +(y4 + 2b2y2 + b2
2 − b1

2/y2)/4 = 0 (3-4) 

where y2 is a positive real solution of (3-1).  Note that equations (3-3) and (3-4) differ 
only in the constant coefficients.  Add 4b0y2 to both sides of the resolvent cubic 
equation (3-1), and then divide through by 4y2. 

 (y4 + 2b2y2 + b2
2 − b1

2/y2)/4  =  b0  

This result equates the constant coefficients in (3-4) and (3-3).  Thus (3-4), the product 
of the two quadratic equations in (3-2), is the depressed quartic equation (3-3).  
Therefore, the solutions of the two quadratic equations are the same as the four 
solutions of the depressed quartic equation provided that y2 is a positive real solution 
of the resolvent cubic equation (3-1).  Descartes’ assertion is verified. 
 
Derivation 4:  NBS Modified Algorithm 
The algorithm inputs are four real coefficients A3, A2, A1, and A0, and the outputs are the 
four values Z1, Z2, Z3, and Z4 such that 

 Z4 + A3Z3 + A2Z2 + A1Z + A0  = (Z−Z1) (Z−Z2) (Z−Z3) (Z−Z4) for all Z. (4-1) 

The outputs are thus the four solutions of the general quartic equation 

 Zn
4

 + A3 Zn
3

 + A2 Zn
2

 + A1 Zn + A0 = 0. (4-2) 
 
The derivation comprises two sections.  The first section derives the algorithm 
calculation equations.  The second section shows that the algorithm should use the 
greatest real solution of the resolvent cubic equation in order to assure that the 
algorithm operates on real numbers only. 
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Calculation Equations 
The NBS method expresses the left side of (4-1) as the product of two quadratics with 
real coefficients: 
 (Z2+p1Z+q1)(Z2+p2Z+q2)  =  Z4 + A3Z3 + A2Z2 + A1Z + A0. (4-3) 

Real values p1, p2, q1, and q2 are calculated from the coefficients A3, A2, A1, and A0, and 
then the solutions of quartic equation are easily computed as the roots of the two 
quadratics. 

 Z1,2 = −p1/2  √p1
2/4 − q1               Z3,4 = −p2/2  √p2

2/4 − q2 (4-4) 

 
The derivation of p1, q1, p2, and q2 starts by expanding and simplifying the left side of 
(4-3). 

Z4 + (p1+p2)Z3 + (p1p2+q1+q2)Z2 + (p1q2+p2q1)Z +q1q2  =  Z4+A3Z3+A2Z2+A1Z+A0 

Equate corresponding coefficients from the two sides to create the following system of 
equations. 
 p1+p2 =  A3 (4-5) 

 p1p2+q1+q2 =  A2 (4-6) 

 p1q2+p2q1 =  A1 (4-7) 

 q1q2 =  A0 (4-8) 

Define u as q1+q2, and solve (4-6) for p1p2. 

 q1+q2 =  u (4-9) 

 p1p2 =  A2 − u (4-10) 
 
Apply the following fact to express p1, p2, q1, and q2 as functions of u:  given the sum S 
and product P of two unknowns x1 and x2, the unknowns are found as solutions of the 
quadratic equation xm

2  − S xm + P  = 0,   m = 1,2.  Equations (4-5) and (4-10) give A3 and 
A2−u as the sum and product of p1 and p2; (4-9) and (4-8) give u and A0 as the sum and 
product of q1 and q2.  Therefore, the quadratic equations for p1 and p2 and for q1 and q2 
are 

pm
2  − A3 pm + A2 − u  = 0      and       qm

2  − u qm + A0  = 0,           m = 1, 2. 

Solve the first of these by assigning the negative radical to p1. 

 p1 = A3/2 − √A3
2 /4 + u − A2                p2 = A3/2 + √A3

2 /4 + u − A2 (4-11) 

We cannot yet say which of q1 or q2 gets the positive radical and which gets the 
negative.  For now, let g have a value of either 1 or −1, and write 

 q1 = u/2 + g √u2/4 − A0                q2 = u/2 − g √u2/4 − A0. (4-12) 

Equations (4-5) and (4-10) show that the radicand in (4-11) is nonnegative: 

 A3
2 /4 + u − A2  =  (p1+p2)2/4 − p1p2  =  (p1 − p2)2/4    0. 
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Equations (4-9) and (4-8) show that the radicand in (4-12) is nonnegative: 

u2/4 − A0  =  (q1+q2)2/4 − q1q2  =  (q1−q2)2/4    0. 
 
To find g, substitute (4-11) and (4-12) into (4-7), and simplify to obtain 

 2g √(A3
2 /4 + u − A2)(u2/4 − A0)  =  A1 − A3u/2. (4-13) 

The radical is nonnegative, so g must correspond to the sign of the right side of the 
equation.  We therefore express g as follows. 

 g  =  { 
 1   if A1 − A3u/2 > 0 

−1   otherwise                  
 (4-14) 

 
To obtain the resolvent cubic equation in u, square both sides of (4-13) and simplify to 
a cubic equation in standard form: 

 u3 − A2u2 + (A1A3 − 4A0)u + 4A0A2 − A1
2 − A0A3

2 = 0. (4-15) 

At least one solution, u1, is real and is to be used for u wherever it occurs in the 
calculation formulas.  If multiple solutions are real, then select the greatest real solution 
for u1 to assure that calculations operate on real numbers only. 
 
This completes derivation of the algorithm calculation equations.   The results are 
summarized as follows.  

• Given the real coefficients A3, A2, A1, and A0 of the general quartic equation (4-2), 
solve the resolvent cubic equation (4-15).  Choose the greatest real solution as 
u1, and apply it as the value of u to be used hereafter. 

• Calculate g using (4-14). 
• Calculate p1, p2, q1, and q2 using (4-11) and (4-12). 
• Calculate the quartic-equation solutions Z1, Z2, Z3 and Z4 using (4-4). 

 
Greatest Real Solution of the Resolvent Cubic Equation 
This section shows that the algorithm should use the greatest real solution of the 
resolvent cubic equation in order to assure that the algorithm operates on real numbers 
only.  In other words, we want to assure that solution u1 of the resolvent cubic equation 
and the values p1, p2, q1, and q2 are real numbers. 
 
The resolvent cubic equation (4-15) returns three solutions for u, which is defined in 
(4-9) as q1+q2.  Quantities q1 and q2 are the constant coefficients in the two quadratics 
on the left side of (4-3).  Therefore, each qm is the product of the two roots of the 
corresponding quadratic.  If Z1 and Z2 are roots of the first quadratic and Z3 and Z4 are 
roots of the second quadratic, then q1 = Z1Z2, q2 = Z3Z4, and u = Z1Z2 + Z3Z4.  This value 
of u corresponds to only one of the possible pairings of the four quartic solutions: the 
one in which Z1 and Z2 are paired together as roots of a quadratic on the left side of 
(4-3).  Solution Z1 can also pair with Z3 or Z4 as roots of a quadratic.  Thus, the four 
quartic-equation solutions Zn have a total of three possible pairing combinations 
leading to three corresponding values of u: 
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 u1 = Z1Z2 + Z3Z4                 u2 = Z1Z3 + Z2Z4                  u3 = Z1Z4 + Z2Z3. (4-16) 
 
Because the different u values correspond to different pairings of the Zn, they produce 
different values of p1, p2, q1, and q2. 

 u1   p1 = −( Z1+Z2), q1 = Z1Z2, p2 = −( Z3+Z4), q2 = Z3Z4 (4-17) 

 u2   p1 = −( Z1+Z3), q1 = Z1Z3, p2 = −( Z2+Z4), q2 = Z2Z4 (4-18) 

 u3   p1 = −( Z1+Z4), q1 = Z1Z4, p2 = −( Z2+Z3), q2 = Z2Z3 (4-19) 
 
The pm and qm values are real only if the two roots Zn of a quadratic are both real or are 
a complex conjugate pair.  At least one of the three possible u values produces such a set 
of real pm and qm values.  We define u1 as this proper choice of u, and solutions Z1 and Z2 
as the proper roots of the first quadratic on the left side of (4-3). 
 
The challenge is to design the algorithm to always select the proper u value for u1.  If all 
four of the Zn are real, then any of the three uk is a good choice for u1 because all of the 
uk are real and all produce real pm and qm values. 
 
If the four solutions Zn are not all real, then either 1) two of the Zn are real and the other 
two are a complex conjugate pair, or 2) the four Zn consist of two complex conjugate 
pairs.  The u2 and u3 values in these cases may be real, but the corresponding pm and qm 
values may not be real.  The following paragraphs consider these possibilities.  Each 
solution Zn is expressed as the sum of its real and imaginary components: Zn = Xn + iYn. 
 
Suppose two of the Zn are real and the other two are a complex conjugate pair.  Let the 
real Zn be roots of the first quadratic.  Then Z1 = X1, Z2 = X2, Z3 = X3 + iY3, and 
Z4 = X3 − iY3 where Y3 > 0.  The three u values in (4-16) become 

u1 = X1X2+X3
2+Y3

2         u2 = X3(X1+X2) + iY3(X1−X2)           u3 = X3(X1+X2) − iY3(X1−X2). 

Solution u1 is real, as are its corresponding pm and qm values in (4-17).  If X1  X2, then u2 
and u3 are a complex conjugate pair with nonzero imaginary components.  Such 
complex u values are avoided, and the real u value is selected as u1.  If X1 = X2, then the 
three u values are all real, but u1 is greater than u2 and u3: 

 u1 = X1
2+X3

2+Y3
2         u2 = u3 = 2X1X3,  

u1  =  X1
2+X3

2+Y3
2  >  X1

2+X3
2  =  (X1 − X3)2 + 2X1X3    2X1X3  =  u2 = u3         u1 > u2 = u3. 

Although u2 and u3 are real, they should be avoided because their corresponding pm and 
qm values in (4-18) and (4-19) are complex.  For example, p1 in (4-18) becomes 

p1 = −( Z1+Z3) = −( X1 + X3 + iY3) = −( X1 + X3) − iY3  where   Y3 > 0. 

Using u1 as the greatest real solution of the resolvent cubic equation avoids such 
complex pm and qm values. 
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Now suppose that the four Zn consist of two complex conjugate pairs.  Then Z1 = X1+iY1, 
Z2 = X1−iY1, Z3 = X3 + iY3, and Z4 = X3 − iY3 where Y1 > 0 and Y3 > 0.  The three u values 
in (4-16) become 

u1 = X1
2+Y1

2+X3
2+Y3

2          u2 = 2(X1X3−Y1Y3)            u3 = 2(X1X3+Y1Y3). 

All three u values are real, but u1 is at least as great as u2 and u3. 

u1 = X1
2+Y1

2+X3
2+Y3

2 =  (X1−X3)2+2X1X3+(Y1−Y3)2+2Y1Y3 

    2X1X3 + 2Y1Y3  =  u3  >  2X1X3 − 2Y1Y3  =  u2. 

  u1  u3 > u2. 

The pm and qm values corresponding to u1 in (4-17) are real, but those corresponding to 
u2 in (4-18) are complex.  The pm and qm values corresponding to u3 in (4-19) are also 
complex unless Z1=Z3.  In any case, complex pm and qm values are avoided by selecting 
u1 as the greatest of the three real solutions of the resolvent cubic equation. 
 
We see that selecting u1 as the greatest real solution of the resolvent cubic equation for 
all cases assures that the algorithm operates only on real numbers: u1, p1, p2, q1, and q2. 
 
 
Derivation 5:  Euler Algorithms 
The Euler algorithms solve the depressed quartic equation 

 Tn
4

 + b2Tn
2

 + b1Tn + b0  =  0, n = 1, 2, 3, 4. (5-1) 
 
Euler’s derivation[7, pp 256-257] assumes that a solution of some quartic equation has the 
form 

 Tn = √r1 + √r2 + √r3 (5-2) 

where r1, r2, and r3 are the three solutions of a cubic equation with real coefficients: 

 rk
3 + a2rk

2 + a1rk + a0 = 0. (5-3) 

The derivation finds that the quartic equation with solution (5-2) is a depressed quartic 
equation (5-1) whose coefficients bn are functions of the am in (5-3).  The derivation 
inverts these functions to calculate the am from bn.  The cubic equation (5-3) with 
coefficients expressed in terms of the bn becomes the resolvent cubic equation.  Its 
solutions r1, r2, and r3 enable calculation of Tn via (5-2).  
 
Euler does not employ the principal-square-root convention for radicals.  Instead, he 
initially allows each of the √rk in (5-2) to be either square root of rk.  The two square-
root values for each of the three rk provide eight combinations of square-root terms in 
(5-2) for eight possible values for Tn.  The derivation shows that only four of these eight 
are valid for any given b1 value in (5-1). 
 
The derivation begins with the requirement for the rk in (5-3): 

 (r − r1) (r − r2) (r − r3)  =  r3 + a2r2 + a1r + a0  for all r. 



Part III  --  Algorithm Derivations 

6/17/2020  Page 30 of 42 

Expand and simplify the left side.  Then equate corresponding coefficients on the two 
sides to obtain: 
 −(r1+r2+r3) =  a2 (5-4) 

 r1r2+r1r3+r2r3 =  a1 (5-5) 

 −r1r2r3 =  a0 . (5-6) 
 
We proceed to find the quartic equation whose solutions are given by (5-2).  First 
square (5-2).  Then apply (5-4) and rearrange.  

 Tn
2 = r1 + r2 + r3 + 2√r1r2 + 2√r1r3 + 2√r2r3 

 Tn
2 + a2 = 2(√r1r2  + √r1r3  +  √r2r3) 

Square both sides to obtain 

 Tn
4 + 2a2Tn

2 + a2
2 =  4(r1r2 + r1r3 + r2r3) + 8 √r1√r2√r3 (√r1 + √r2 + √r3). 

Apply (5-5) and (5-2).  Then rearrange to standard form. 

Tn
4 + 2a2Tn

2 + a2
2  =  4a1 + 8 √r1√r2√r3 Tn 

 Tn
4 + 2a2Tn

2 − 8 √r1√r2√r3 Tn + a2
2 − 4a1  =  0 (5-7) 

Equation (5-6) shows that 

 √r1√r2√r3  =  √r1r2r3   =  √−a0. (5-8) 

Equation (5-7) becomes 

 Tn
4 + 2a2Tn

2 − 8√−a0 Tn + a2
2 − 4a1  =  0, (5-9) 

which has the form of (5-1). 
 
With this information, we can now find the resolvent cubic equation for the depressed 
quartic equation (5-1).  Equate coefficients bn in (5-1) to the corresponding coefficients 
in (5-9). 

 b2 =  2a2 b1 = − 8√−a0 b0 =  a2
2 − 4a1. (5-10) 

Solve this system of equations for a2, a1, and a0, and apply the results to (5-3). 

 a2 =  b2/2 a1 = (b2
2 − 4b0)/16 a0 =  −b1

2/64 (5-11) 

 rk
3 + (b2/2)rk

2 + [(b2
2 − 4b0)/16]rk − b1

2/64 = 0 (5-12) 

This is Euler’s resolvent cubic equation. 

The constant coefficient, a0 = −b1
2/64, provides information about the equation’s three 

solutions, r1, r2, and r3.  Because −b1
2/64 is less than or equal to zero, the equation has at 

least one nonnegative real solution, say r1: r1  0.  Equations (5-6) and (5-11) for a0 
combine to show that 
 r1r2r3  =  b1

2/64    0. (5-13) 
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The product of all three solutions is a nonnegative real number.  As a result, the product 
r2r3 is a nonnegative real number: 

 r1  0    and    r1r2r3 = b1
2/64   0        r2r3  0. 

Solutions r2 and r3 are real or they form a complex conjugate pair.  If they are real, then 
they cannot have opposite signs. 
 
Through its constant coefficient, −b1

2/64, equation (5-12) depends on the modulus of b1, 
but not on its sign.  Thus (5-12) is the resolvent cubic equation for two quartic 
equations: 

Tn
4 + b2Tn

2  b1Tn + b0  =  0. 

Each of these two quartic equations has four solutions for a total of eight solutions.  
These are the eight possible values of Tn given by (5-2): 

 Tn = √r1 + √r2 + √r3 . (5-2) 

To determine which four of the Tn values from (5-2) are solutions of 

 Tn
4

 + b2Tn
2

 + b1Tn + b0  =  0, (5-1) 

combine (5-10) for b1 with (5-8) to obtain 

 √r1√r2√r3  =  −b1/8. (5-14) 

Equation (5-2) produces a desired solution Tn only if the three radical terms on the 
right satisfy (5-14).  The user is allowed to select either of two square roots for any two 
of the √rk .  The third √rk  is selected to satisfy (5-14).  The user only needs to check 
that the two sides of (5-14) have the same sign because (5-13) guarantees that they 
have the same modulus. 

 r1r2r3  =  b1
2/64        |√r1√r2√r3|  =  |b1/8| 

 
With a set of square roots √rk that satisfies (5-14), the four solutions of (5-1) become: 
 

 T1 = √r1 + √r2 + √r3 (5-15) 

 T2 = √r1  − √r2  − √r3 (5-16) 

 T3 = − √r1 + √r2  − √r3 (5-17) 

 T4 = − √r1  − √r2 + √r3 . (5-18) 

 
Each of these Tn expressions is valid because its terms are all square roots of the rk, and 
the product of its terms equals −b1/8 to satisfy (5-14). 
 
In summary, Euler’s original algorithm  

• starts with the coefficients b2, b1, and b0 of the depressed quartic equation (5-1), 
• solves the resolvent cubic equation (5-12) for r1, r2, and r3, 
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• selects signs of √r1, √r2, and √r3 to satisfy (5-14), 

• and calculates the four solutions Tn of (5-1) by using (5-15) through (5-18). 
 
The conversion of Euler’s original algorithm to the modified algorithm was described 
previously in Part II.  Titles of the relevant Part II sections are underlined in the 
following summary.  The original Tn formulas are recast to use the Principal-Square-
Root Convention for Radicals, equations (6) and (7).   Solution r1 of the resolvent cubic 
equation is defined as the Greatest Real Solution of the Resolvent Cubic Equation.  The 
section Tn Formulas for Euler and Van der Waerden Algorithms shows that r1 is 
nonnegative, (13), and derives the simplified form of the modified Tn formulas, (15). 

 T1,2  =  √r1   √r2 + r3 − 2√r2r3            T3,4= − √r1   √r2 + r3 + 2√r2r3. 

The inner integrand r2r3 is a nonnegative real number by (13).  Solutions r2 = x2 + iy2 
and r3 = x3 + iy3 of the resolvent cubic equation are real (y2 = y3 = 0), or they form a 
complex conjugate pair (x2 = x3¸ y2 = −y3 > 0).  In either case, the sum r2 + r3 equals 
x2 + x3, and the product r2r3 equals x2x3 + y2

2
.  The modified algorithm Tn formulas 

become 

T1,2  =  √r1   √x2 + x3 − 2√x2x3 + y2
2      T3,4  =  − √r1   √x2 + x3 + 2√x2x3 + y2

2. 

All constituents of these Tn formulas are real numbers, and the inner integrand 
r2r3 = x2x3 + y2

2 is a nonnegative real number.  Thus, the Tn formulas require 
operations on real numbers only. 
 
Derivation 6:  Van der Waerden Algorithms 
This section derives the Van der Waerden original and modified algorithms for solving 
the depressed quartic equation 

 Tn
4

 + b2Tn
2

 + b1Tn + b0  =  0,             n = 1, 2, 3, 4.  (6-1) 

In the Van der Waerden original algorithm and its derivation here, the radical indicates 
that either of the two possible square roots applies. 
 
The Resolvent Cubic Equation 
Express the quartic in (6-1) as the product of two quadratics with real coefficients. 

 (T2+p1T+q1)(T2+p2T+q2)  =  T4 + b2T2 + b1T + b0 (6-2) 

Expand and simplify the left side. 

T4 + (p1+p2)T3 + (p1p2+q1+q2)T2 + (p1q2+p2q1)T +q1q2  =  T4 + b2T2 + b1T + b0 

Equate corresponding coefficients from the two sides to create the following system of 
equations. 
 p1+p2 =  0 (6-3) 

 p1p2+q1+q2 =  b2 (6-4) 

 p1q2+p2q1 =  b1 (6-5) 
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 q1q2 =  b0  (6-6) 

Define k as k =  p1p2. (6-7) 

Then (6-4) becomes q1+q2 =  b2 − k. (6-8) 

 
Equations (6-3) and (6-7) give 0 and k as the sum and product of p1 and p2; (6-8) and 
(6-6) give b2 − k and b0 as the sum and product of q1 and q2.  Values of p1, p2, q1, and q2 
are therefore solutions of the quadratic equations 

pm
2  + k  =  0        and          qm

2  − (b2−)qm +b0  =  0,         m = 1, 2. 

The solutions are 

 p1 =  − √−k q1 =  
1

2
[b2 − k + ′√(b2 − k)2 − 4b0] 

 p2 = √−k q2 =   
1

2
[b2 − k − ′√(b2 − k)2 − 4b0] 

where ′ has a value of either 1 or −1. 
 
Substitute the expressions for p1, p2, q1, and q2 into (6-5) and simplify. 

 ′√−k[(b2 − k)2 − 4b0]  =  b1 

Square both sides and rearrange to form the Van der Waerden resolvent cubic equation. 

 k
3  − 2b2k

2  + (b2
2 − 4b0)k + b1

2 = 0 (6-9) 

 
The Three Solutions of the Resolvent Cubic Equation 
The three solutions 1, 2, and 3 of (6-9) satisfy the requirement 

 (−1)( −2)( −3)  =  3 − 2b22 + (b2
2 − 4b0) + b1

2    for all .  

Expand and simplify the left side, and then equate corresponding coefficients from the 
two sides. 
 1 + 2 + 3 =  2b2 (6-10) 

 12 + 13 + 23 =  b2
2 − 4b0 (6-11) 

 −123 =  b1
2 (6-12) 

Van der Waerden uses all three solutions 1, 2, and 3 of (6-9).  Each solution 
corresponds to its particular grouping of the four Tn into two pair: each pair of Tn are 
the roots of a quadratic on the left side (6-2).   
 
Solution 1 corresponds to T1 paired with T2 as roots of T2+p1T+q1, so T3 and T4 are 
roots of T2+p2T+q2.  Then 

 (T −T1)(T − T2) = T2+p1T+q1     and     (T −T3)(T − T4) = T2+p2T+q2          imply that 

 p1 = −(T1 + T2)          p2 = −(T3 + T4). 

These expressions for p1 and p2 combined with (6-3) and (6-7) show that 
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 T1 + T2 + T3 + T4  =  0 (6-13) 

and 1  =  (T1 + T2) (T3 + T4)  =  −(T1 + T2)2  =  −(T3 + T4)2. (6-14) 
 
Solutions 2 and 3 correspond to the two alternate pairings: T1 paired with T3 and T1 
paired with T4:  

 2  =  (T1 + T3) (T2 + T4)  =  − (T1 + T3)2  =  − (T2 + T4)2 (6-15) 

 3  =  (T1 + T4) (T2 + T3)  =  − (T1 + T4)2  =  − (T2 + T3)2 . (6-16) 

 
Solutions of the Depressed Quartic Equation in the Original Algorithm 
The solutions Tn of the depressed quartic equation derive from (6-13) to (6-16).  
Equations (6-14) to (6-16) provide the following corresponding expressions. 

 T1 + T2  =  −(T3 + T4)  =  √−1 

 T1 + T3  =  −(T2 + T4)  =  √−2 

 T1 + T4  =  −(T2 + T3)  =  √−3 . 

By invoking T1+T2+T3+T4 = 0 from (6-13), these last three equations convert to the 
four Tn formulas as follows.  

T1  =  
1

2
(T1+T2  +  T1+T3  +  T1+T4)   

T2  =  
1

2
(T1+T2  +  T2+T4  +  T2+T3)   

T3  =  
1

2
(T3+T4  +  T1+T3  +  T2+T3)   

T4  =  
1

2
(T3+T4  +  T2+T4  +  T1+T4)   

T1  =   
1

2
(   √−1 + √−2 + √−3 ) (6-17) 

T2  =   
1

2
(   √−1  − √−2  − √−3 ) (6-18) 

T3  =   
1

2
(− √−1 + √−2  − √−3 ) (6-19) 

T4  =   
1

2
(− √−1 −  √−2 + √−3 ) (6-20) 

 
To qualify as solutions of the depressed quartic equation (6-1), these expressions for 
the four Tn must satisfy the requirement  

 (T−T1) (T−T2) (T−T3) (T−T4)  = T4 + b2T2 + b1T + b0     for all T. 

That is, the Tn must satisfy the system:  
 T1 + T2 + T3 + T4  = 0 (6-21) 

 T1T2 + T1T3 + T1T4 + T2T3 + T2T4 + T3T4  = b2 (6-22) 

 − T1T2T3 − T1T2T4 − T1T3T4 − T2T3T4  = b1 (6-23) 

 T1T2T3T4  = b0 . (6-24) 

The Tn of (6-17) to (6-20) do satisfy (6-21).  They also satisfy (6-22) and (6-24) as 
verified with (6-10) and (6-11).  However, (6-23) holds only if 

 √−1√−2√−3   =  −b1 . (6-25) 
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Equation (6-25) becomes a restriction on the √−k .  The user selects either square root 

for any two of the √−k .  The third √−k  is selected to satisfy (6-25).  The user only 

needs to check that the two sides of this equation have the same sign.  Equation (6-12) 
guarantees that the two sides have equal magnitudes: 

 −123 = b1
2              |√−123| = |√−1 √−2 √−3| = |−b1|. (6-26) 

 
This completes the derivation of the Van der Waerden original algorithm, which is 
summarized as follows. 

• Given the coefficients b2, b1, and b0 of (6-1), the algorithm solves the resolvent 
cubic equation (6-9) for its three solutions 1, 2, and 3. 

• Signs of the three √−k are selected to satisfy (6-25). 

• Equations (6-17) to (6-20) give the solutions T1, T2, T3 and T4 of the depressed 
quartic equation (6-1). 

 
 
Van der Waerden Modified Algorithm 
Conversion of the Van der Waerden original algorithm to the modified algorithm is 
similar to the corresponding conversion involving the Euler algorithms. 
 
First, the original Tn formulas are recast to use the principal-square-root convention for 

radicals.  This is accomplished by replacing √−3 with −s√−3 where 

  = {
1    if b1 > 0

−1  otherwise
 and s = {   1   if √−1√−2√−3    0

−1                       otherwise.   
 (6-27) 

The definitions of these special functions and (6-26) imply that 

b1 = |b1|              and         √−1√−2√−3  =  s|√−1√−2√−3|  =  s|b1|. 

 
The Van der Waerden original Tn formulas change  

from T1,2  =   
1

2
[√−1(√−2 + √−3)] and T3,4  =  

1

2
[−√−1(√−2 − √−3)]    to 

 

   T1,2  =   
1

2
[√−1(√−2 − s√−3)]        T3,4  =  

1

2
[−√−1(√−2 + s√−3)]. (6-28) 

 
In this revised formulation, the product of terms inside the brackets for all Tn is 

−s√−1√−2√−3  =  −s2|b1|  =  −|b1|  =  − b1      as required by (6-25). 

 

The function s in (6-27) accommodates the condition √−1√−2√−3 < 0, which occurs 

when one of the −k, say −1, is positive real and the other two −k are negative real: 

√−2 = i√|2| ,  √−3 = i√|3|              √−2√−3  =  −√|2|√|3|  =  −√23  <  0. 
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The revised Van der Waerden algorithm specifies that 1 is a nonpositive real solution, 
1  0, of the resolvent cubic equation (6-9).  Such a solution must exist because the 
constant term on the left side is b1

2  0.  As a result, both −1 and its principal square 
root are nonnegative real numbers. 

 −1  0          √−1    0 (6-29) 

Equation (6-12) shows that  −123 = b1
2  0.  Therefore, 

 −1  0     and     −123 = b1
2  0            23  0. (6-30) 

The product 23 is a nonnegative real number.  Thus, 2 = x2 + iy2 and 3 = x3 + iy3 
are real (y2 = y3 = 0), or they form a complex conjugate pair (x2 = x3, y2 = −y3 > 0).  
If real, then they cannot have opposite signs.  This restriction on 2 and 3 implies that 
each parenthetical expression in (6-28) is either real or pure imaginary. 

Conversion of the Tn formulas in (6-28) to those in the Van der Waerden modified 
algorithm starts by replacing each parenthetical expression with the radical of its 
square. 

T1,2 = 
1

2
[   √−1  √−2 − 3 − 2s√−2√−3 ] 

T3,4 = 
1

2
[−√−1  √−2 − 3 + 2s√−2√−3 ] 

(6-31) 

T1 and T2 in (6-31) each have the same value as in (6-28) unless √−2 − s√−3 

happens to be either negative real or negative imaginary.  In that case, T1 in (6-28) 
becomes T2 in (6-31) and T2 in (6-28) becomes T1 in (6-31).  T3 and T4 are 

correspondingly affected by the value of √−2 + s√−3. 

 
As an option to prevent the Tn from flipping values between (6-28) and (6-31), use the 
following convention: select 2 = x2 + iy2 and 3 = x3 + iy3 so that |x2|  |x3| and 
y2 = −y3  0.  The convention assures that the parenthetical expressions in (6-28) are 
either nonnegative real or nonnegative imaginary.  The convention does not affect 
(6-31), which is symmetrical with respect to 2 and  3. 
 
Equation (6-29) implies that the formula for s in (6-27) simplifies to 

 s = {   1   if √−2√−3    0

−1              otherwise   
                √−2√−3  =  s|√−2√−3|  =  s|√23|. 

This result and (6-30) imply that 

 s√−2√−3  =  s2 |√23|  =  √23  . 

The Tn formulas in (6-31) become 

T1,2 = 
1

2
[√−1  √−2 − 3 − 2√23 ]        T3,4 = 

1

2
[−√−1  √−2 − 3 + 2√23 ]. 
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Whether the values 2 = x2 + iy2 and 3 = x3 + iy3 are real (y2 = y3 = 0) or form a 
complex conjugate pair (x2 = x3, y2 = −y3 > 0), we have −2 − 3 = −x2 − x3 and 

23 = x2x3 + y2
2 .  The final Tn formulas for the Van der Waerden modified algorithm 

become 

 T1,2 = 
1

2
[   √−1  √−x2 − x3 − 2√x2x3 + y2

2  ] 

 T3,4 = 
1

2
[−√−1  √−x2 − x3 + 2√x2x3 + y2

2  ] . 

All constituents of these Van der Waerden modified Tn formulas are real numbers, and 

the inner integrand 23 = x2x3 + y2
2  is a nonnegative real number.  The calculation 

therefore requires operations on real numbers only. 
 
 



References 

6/17/2020  Page 38 of 42 

References 
1 Cardano, Girolamo, The Rules of Algebra (Ars Magna) [1545], translated and edited 

by T. Richard Witmer. 2007 reissue, Dover Publications, Inc., Mineola, NY (1993) 
ISBN 0-486-45873-3. 

2  Mishina, A.P. and I.V. Proskuryakov, Higher Algebra: Linear Algebra, Polynomials, 
General Algebra [1962], translated from the Russian by Ann Swinfen, Pergamon 
Press, Oxford (1965). 

3 “Quartic function”, Wikipedia : https://en.wikipedia.org/wiki/Quartic_function. 

4 “Ferrari method”, Encyclopedia of Mathematics : 
https://www.encyclopediaofmath.org//index.php?title=Ferrari_method&oldid=3
5675. 

5 Descartes, René, "Book III: On the construction of solid and supersolid problems", 
The Geometry of Rene Descartes [1637], translated by David Eugene Smith and 
Marcia L. Latham. 2016 printing, Dover Publications, Inc., New York, (1954) ISBN-
10 0-486-60068-8, ISBN-13 978-0-486-60068-0. 

6 National Bureau of Standards, Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables Ed. by Milton Abramowitz and Irene A. Stegun 
(1964). Tenth printing with corrections, U.S. Government Printing Office, 
Washington, D.C., 1972, 
http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf. 

7 Euler, Leonhard, "Section III, Chapter XV - Of a new method of resolving equations 
of the fourth degree", Elements of Algebra (Vollständige Anleitung zur Algebra) 
[1765], based on the 1828 edition of John Hewlett’s 1822 translation, CreateSpace, 
Inc. & Kindle Direct Publishing (2015) ISBN-10: 150890118Z, ISBN-13: 978-
1508901181. 

8 Van der Waerden, B.L., "The Galois theory: Equations of the second, third, and 
fourth degrees", Algebra, Vol 1 [1930], translated from the German by Fred Blum 
and John R. Schulenberger, (7th ed.), Springer-Verlag, New York, (1991) 
ISBN 0-387-97424-5. 

9 National Institute of Standards and Technology, Digital Library of Mathematical 
Functions, (2019-03-15) DLMF Update; Version 1.0.22, 
https://dlmf.nist.gov/1.11#iii. 

10 M. Heikkinen, "Geschlossene Formeln zur Berechnung räumlicher geodäticher 
Koordinaten aus rechtwinkligen Koordinaten," Zeitschrift für Vermessungswesen, 
pp. 207-211, Vol. 5, 1982. 

 
 

https://en.wikipedia.org/wiki/Quartic_function
https://www.encyclopediaofmath.org/index.php?title=Ferrari_method&oldid=35675
https://www.encyclopediaofmath.org/index.php?title=Ferrari_method&oldid=35675
http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
https://dlmf.nist.gov/1.11#iii


Appendix A 

6/17/2020  Page 39 of 42 

Appendix A  --  Computational Instability of the Ferrari Common Algorithm 

This appendix demonstrates that the Ferrari common algorithm becomes 
computationally unstable as solution m of the resolvent cubic equation approaches 
zero.  The table below gives the algorithm to find the four solutions Tn (n = 1,2,3,4) of 
the depressed quartic equation 

 Tn
4

 + b2Tn
2

 + b1Tn + b0  =  0 (A-1) 

where the three real coefficients b2, b1, and b0 are given. 
 

Solve this resolvent cubic equation for real m: 

 m3 + b2m2 + (b2
2/4 − b0)m − b1

2/8  =  0. (A-2) 

Use a real solution m  0 if it exists.  Otherwise, m = 0. 

If m > 0, then 

T1,2  =    √m/2   √−m/2 − b2/2 − b1/(2√2m ) 

T3,4  = −√m/2   √−m/2 − b2/2 + b1/(2√2m ) 

 

If m = 0, then 

T1,2  =    √−b2/2 + √b2
2/4 − b0 

T3,4  =    √−b2/2 − √b2
2/4 − b0 

 

 
If a nonzero real solution m of the resolvent cubic equation becomes sufficiently small, 
then the m3 and m2 terms vanish, and that equation becomes 

(b2
2/4 − b0)m − b1

2/8  =  0            b1
2/(8m)  =  b2

2/4 − b0       

 b1  =  (2√2m )√b2
2/4 − b0           for sufficiently small m.  

Thus, b1 approaches zero as m approaches zero. 
 
The fraction b1/(2√2m ) causes computational instability for small m because the m 
value, calculated as the solution of a cubic equation, typically contains a small round-off 
error e not found in b1.  Square brackets distinguish such a calculated value [m] from 
the true value m. 
 [m] = m + e (A-3) 

The calculated fraction [b1/(2√2m )] becomes 

[
b1

2√2m
]  =  

b1

2√2[m]
  =  

b1

2√2(m+e)
  =  

b1

2√2m
 √

m

m+e
    =  

b1

2√2m
 (1 + e/m)−1/2. 

 
When m approaches the magnitude of e, then the calculated fraction [b1/(2√2m )] is 

dominated by error.  Suppose e is negative.  As m approaches e, the factor 

(1 + e/m)−1/2 becomes unbounded.  The calculated fraction [b1/(2√2m )] and the 

calculated solutions [Tn] are then also unbounded. 
 
The Ferrari common algorithm becomes unstable when m and b1 approach the order of 
round-off error e, but the instability can be even worse as shown in the following 
example.  Let  > 0 be an adjustable real parameter, and let the true solutions Tn of a 
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depressed quartic equation be 

 T1 = T2 = √/2      and      T3,4 = −√/2  2i. (A-4) 

The depressed quartic equation (A-1) is (Tn −T1)(T n −T2)(T n −T3)(T n −T4) = 

(Tn − √/2)
2

[Tn − (−√/2 +  2i ][Tn − (−√/2 −  2i )]  =   

Tn
4

 + (4 − )Tn
2

 − 8√/2 Tn + 2 + 2/4  =  0. 

The coefficients b2, b1, and b0 are: 

 b2 = 4 −                b1 = −8√/2                    b0 = 2 + 2/4. (A-5) 

 
The resolvent cubic equation (A-2) is 

 m3 + (4−)m2 + 4(1−)m − 4  =  0. (A-6) 

The left side factors to (m−)(m+2)2, so the three solutions are , −2, and −2.  Solution 
m = , the only nonnegative real solution, applies.  If (A-5) and m =  are inserted into 
the Ferrari common Tn formulas, those formulas produce the four Tn solutions in (A-4). 
 
If the coefficients in (A-6) are given as numerical values, then the calculated solution  
[m] = m + e =  + e  contains a round-off error e, which in turn produces error in the 
calculated values of the Tn.  The calculated solution for T1 using the Ferrari common 
algorithm is 

 [T1]  =   √[m]/2 +  √−[m]/2 − b2/2 − b1/(2√2[m] ) . (A-7) 

Substitute (A-3),  = m, and (A-5) into (A-7) and simplify to obtain 

[T1]  =  √(m + e)/2  +  E 

where                   E  =  √2f(e/m) − e/2           and             f(e/m) = (1 + e/m)−1/2 − 1. 

We consider only the case m =  > e.  If e is negative (0 < −e < m), then  2f(e/m) − e/2  
is positive, and E is real.  If e is positive, then 2f(e/m) − e/2 is negative, and E is 

imaginary.  If e = 0, then E = 0 and [T1] = √m/2 = √/2 = T1. 
 
The figure on the next page demonstrates graphically the instability of the Ferrari 
common algorithm as m =  becomes small.  The first graph plots E, [T1], and true T1 
versus m =  for an assumed constant round-off error e = −110−16.  This e value is 
typical for a 64-bit operating system applied to this problem.  The plot shows how error 
E increases as m diminishes.  Error E starts to dominate [T1] as m falls to 10−8.  This m 
value is the square root of e and 108 times as great as e.  As m decreases further and 
approaches 10−16, E and [T1] increase without limit whereas the true T1 value 

approaches 10−8/√2. 
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Figure A-1   Computational Instability of Ferrari Common Algorithm for Small m 
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The second graph demonstrates the same effect by using a 64-bit operating system to 
calculate b2, b1, and b0 from , then calculate [m] as the solution of resolvent cubic 
equation (A-6), and finally calculate [T1] as the solution of (A-7).   The graph plots [T1] 

as its real part, its imaginary part, and its modulus.  True T1 = √/2 is also plotted for 

reference.  
 
In summary, the fraction b1/(2√2m ) in the Ferrari common Tn formulas produces 

computational instability.  The value m, calculated as the solution of the resolvent cubic 
equation, typically contains a small round-off error e not found in b1.  As m diminishes 
to the magnitude of e, then the calculated fraction [b1/(2√2m )] is dominated by error.  
The instability is particularly severe in the case illustrated in Figure A-1 above.  The 
calculated value [T1] suffers large error even when the m value is several orders of 
magnitude greater than the round-off error e.  If error e is negative, then the error in 
[T1] can become unbounded as m approaches the modulus of e.  By reason of this 
instability, the Ferrari common algorithm is not recommended for general calculation. 
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