6.252 NONLINEAR PROGRAMMING

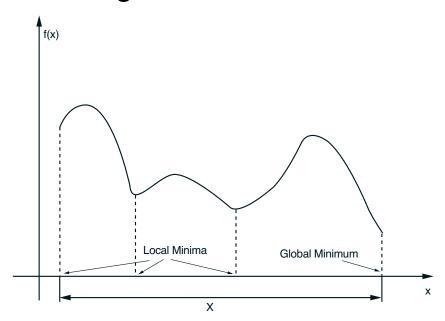
LECTURE 8

OPTIMIZATION OVER A CONVEX SET;

OPTIMALITY CONDITIONS

Problem: $\min_{x \in X} f(x)$, where:

- (a) $X \subset \Re^n$ is nonempty, convex, and closed.
- (b) f is continuously differentiable over X.
- Local and global minima. If f is convex local minima are also global.



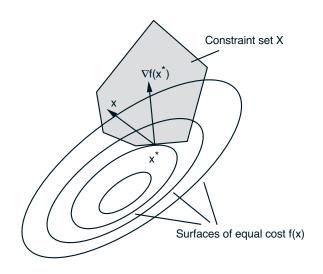
OPTIMALITY CONDITION

Proposition (Optimality Condition)

(a) If x^* is a local minimum of f over X, then

$$\nabla f(x^*)'(x - x^*) \ge 0, \qquad \forall \ x \in X.$$

(b) If f is convex over X, then this condition is also sufficient for x^* to minimize f over X.



At a local minimum x^* , the gradient $\nabla f(x^*)$ makes an angle less than or equal to 90 degrees with all feasible variations $x-x^*$, $x \in X$.

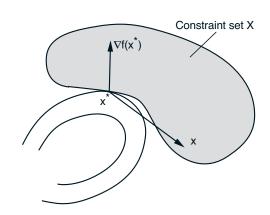


Illustration of failure of the optimality condition when X is not convex. Here x^* is a local min but we have $\nabla f(x^*)'(x-x^*) < 0$ for the feasible vector x shown.

PROOF

Proof: (a) By contradiction. Suppose that $\nabla f(x^*)'(x-x^*) < 0$ for some $x \in X$. By the Mean Value Theorem, for every $\epsilon > 0$ there exists an $s \in [0,1]$ such that

$$f(x^* + \epsilon(x - x^*)) = f(x^*) + \epsilon \nabla f(x^* + s\epsilon(x - x^*))'(x - x^*).$$

Since ∇f is continuous, for suff. small $\epsilon > 0$,

$$\nabla f(x^* + s\epsilon(x - x^*))'(x - x^*) < 0$$

so that $f\big(x^* + \epsilon(x - x^*)\big) < f(x^*)$. The vector $x^* + \epsilon(x - x^*)$ is feasible for all $\epsilon \in [0, 1]$ because X is convex, so the optimality of x^* is contradicted.

(b) Using the convexity of f

$$f(x) \ge f(x^*) + \nabla f(x^*)'(x - x^*)$$

for every $x \in X$. If the condition $\nabla f(x^*)'(x-x^*) \ge 0$ holds for all $x \in X$, we obtain $f(x) \ge f(x^*)$, so x^* minimizes f over X. Q.E.D.

OPTIMIZATION SUBJECT TO BOUNDS

• Let $X = \{x \mid x \geq 0\}$. Then the necessary condition for $x^* = (x_1^*, \dots, x_n^*)$ to be a local min is

$$\sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*) \ge 0, \qquad \forall \ x_i \ge 0, \ i = 1, \dots, n.$$

• Fix i. Let $x_j = x_j^*$ for $j \neq i$ and $x_i = x_i^* + 1$:

$$\frac{\partial f(x^*)}{\partial x_i} \ge 0, \qquad \forall i.$$

• If $x_i^*>0$, let also $x_j=x_j^*$ for $j\neq i$ and $x_i=\frac{1}{2}x_i^*$. Then $\partial f(x^*)/\partial x_i\leq 0$, so

$$\frac{\partial f(\mathbf{x}^*)}{\partial x_i} = 0, \qquad \text{if } x_i^* > 0.$$

OPTIMIZATION OVER A SIMPLEX

$$X = \left\{ x \mid x \ge 0, \sum_{i=1}^{n} x_i = r \right\}$$

where r > 0 is a given scalar.

• Necessary condition for $x^* = (x_1^*, \dots, x_n^*)$ to be a local min:

$$\sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*) \ge 0, \qquad \forall x_i \ge 0 \text{ with } \sum_{i=1}^{n} x_i = r.$$

• Fix i with $x_i^* > 0$ and let j be any other index. Use x with $x_i = 0$, $x_j = x_j^* + x_i^*$, and $x_m = x_m^*$ for all $m \neq i, j$:

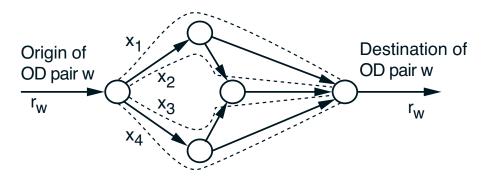
$$\left(\frac{\partial f(x^*)}{\partial x_j} - \frac{\partial f(x^*)}{\partial x_i}\right) x_i^* \ge 0,$$

$$x_i^* > 0 \implies \frac{\partial f(x^*)}{\partial x_i} \le \frac{\partial f(x^*)}{\partial x_j}, \quad \forall j,$$

i.e., at the optimum, positive components have minimal (and equal) first cost derivative.

OPTIMAL ROUTING

• Given a data net, and a set W of OD pairs w = (i, j). Each OD pair w has input traffic r_w .



Optimal routing problem:

minimize
$$D(x) = \sum_{(i,j)} D_{ij} \left(\sum_{\substack{\text{all paths } p \\ \text{containing } (i,j)}} x_p \right)$$

subject to $\sum_{p \in P_w} x_p = r_w, \ \forall \ w \in W,$
 $x_p \ge 0, \ \forall \ p \in P_w, \ w \in W$

Optimality condition

$$x_p^* > 0 \implies \frac{\partial D(x^*)}{\partial x_p} \le \frac{\partial D(x^*)}{\partial x_{p'}}, \qquad \forall p' \in P_w,$$

i.e., paths carrying > 0 flow are shortest with respect to first cost derivative.

TRAFFIC ASSIGNMENT

- Transportation network with OD pairs w. Each w has paths $p \in P_w$ and traffic r_w . Let x_p be the flow of path p and let $T_{ij}\left(\sum_{p: \text{crossing }(i,j)} x_p\right)$ be the travel time of link (i,j).
- User-optimization principle: Traffic equilibrium is established when each user of the network chooses, among all available paths, a path of minimum travel time, i.e., for all $w \in W$ and paths $p \in P_w$,

$$x_p^* > 0 \implies t_p(x^*) \le t_{p'}(x^*), \qquad \forall p' \in P_w, \ \forall w \in W$$

where $t_p(x)$, is the travel time of path p

$$t_p(x) = \sum_{\substack{\text{all arcs } (i,j) \\ \text{on path } p}} T_{ij}(F_{ij}), \quad \forall p \in P_w, \ \forall \ w \in W.$$

Identical with the optimality condition of the routing problem if we identify the arc travel time $T_{ij}(F_{ij})$ with the cost derivative $D'_{ij}(F_{ij})$.

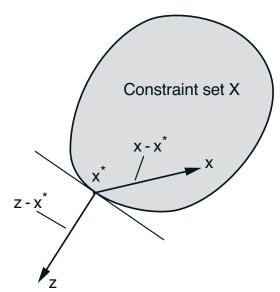
PROJECTION OVER A CONVEX SET

• Let $z \in \Re^n$ and a closed convex set X be given. Problem:

minimize
$$f(x) = ||z - x||^2$$

subject to $x \in X$.

Proposition (Projection Theorem) Problem has a unique solution $[z]^+$ (the projection of z).



Necessary and sufficient condition for x^* to be the projection. The angle between $z - x^*$ and $x - x^*$ should be greater or equal to 90 degrees for all $x \in X$, or $(z - x^*)'(x - x^*) \le 0$

- If X is a subspace, $z x^* \perp X$.
- The mapping $f:\Re^n\mapsto X$ defined by $f(x)=[x]^+$ is continuous and nonexpansive, that is,

$$||[x]^+ - [y]^+|| \le ||x - y||, \quad \forall x, y \in \Re^n.$$