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Consider, for instance, the link (A, B) with a length of 4 units, For alI
points x on (A, B) we can find and plot the functions d(x,j) for j = A, B, C,
D, E. For instance, if we set, by convention, x = O at A and x = 4 at B,
we have

d(x, B) = 4 - x

and

d(x, D) = {I + x
4 + (4 - x)

o ::;;x ::;;3.5
3.5 ::;; x ::;;4

The functions d(x, A), d(x, B), d(x, C), d(x, D), and d(x, E) are ali shown
on Figure 6.38a for the link (A, B). Now, since, by definition,

m(x) = Max (d(x, A), d(x, B), d(x, C), d(x, D), d(x, E))

the function m(x) is given by the upper envelope for the five functions as
shown on Figure 6.38a. Obviously, the local center of link (A, B) is at a point
0.5 unit away from A (and 3.5 units away frorn B) and m(Xt) = 3.5.

Repeating the same procedure for the other four links, we finalIy obtain

link (A, B): local center 0.5 unit from A; m(xt) = 3.5

link (A, D): local center at A and at D; m(xt) = 4

link (B, C): local center at C; m(xt) = 3

link (D, E): local center at D; m(Xt) = 4

link (C, D): local center 0.5 uni! frorn C; m(xt) = 2.5

This completes Step 1 of the algorithm. In Step 2 we choose the point x· on
the link (C, D) and 0.5 unit away from C for the location of the absolute
center; m(x*) = 2.5.

From our example we concIude that:

1. The absolute center and the vertex center do not have to coincide. In
fact, the absolute center does no! have to be on a link emanating
from the node where the vertex center is located-as was the case in
our example.

2. The maximum distance function, m(x), is piecewise linear and its
sIope is always +1or -1.

From the second remark above, the folIowing result can be easily derived
[ODON 74]:

Theorem: For the local center, Xl> on a link (p, q),

(6.26)

where, as usual, l(p, q) denotes the length of link (p, q).
\ \ I' )
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Exercise 6.7 Prove the validity of the theorem.

. From this theorem and from the observation that, by definition, m(i*) >
m(x*) (i.e., the maximum distance associated with the vertex center must be
greater than or equal to the corresponding distance for the absolute center),
we can derive the following sim pie test:

If for a link (p, q),

m(p) + m(i) - l(p, q) > m(i'!') (6.27)

then the local center x, of (p, q) cannot improve on m(i*) (and, therefore,
need not be found).

This test, taking advantage of the fact that it is very simple to find m(i*),
often leads to considerable reduction in the computation effort required to
obtain the absolute center (see also Problem 6.12).

Example 17 (continued)

With respect to our five-node, five-link example; we found easily that the
vertex center is at no de C and that m(i*) = m(C) = 3.

Applying our test to the five links of the graph, we then obtain

link (A, B): m(A) + m(B) - l(A, B) 4 + 5 - 42 = 2 = 2.5 « 3)

link (A, D): m(A) + m(~) - l(A, D) = 4 + i-I = 3.5 (> 3)

link (B, C): m(B) + m(~) - l(B, C) = 5 + ~- 2 = 3 (= 3)

link (D, E): m(D) + m(~) - l(D, E) = 4 + ~- 1 = 4 (> 3)

link (C, D): m(C) + m(~) - l(C, D) = 3 +i-2 = 2.5 « 3)

Therefore, the local center need be found only for links (A, B) and
(C, D)-a significant savings in computational effort.

We also note that a highly efficient algorithm exists for finding the
absolute center when the network at hand happens to be a tree (see Problem
6.11). The algorithm [HAND 73] is the following:

Síngle-Tree-Center Algorithm (Algorithm 6.13)

Let G be a tree network and let e, (i = 1,2, ... , m) represent the end
vertices (i.e., the nodes of degree 1) of the tree. Then:
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STEP 1: Choose arbitrarily any point X E G and find the (end) vertex, say
e" farthest away from x.

STEP 2: Find the (end) vertex, say e" which is farthest away from e,.

STEP 3: Th ; absolute center of G is at the midpoint of the path from e,
to e,. The vertex center or) G is at the node that is elosest to the
absolute center.

This last algorithm does not even require computing the minimum dis-
tance matrix for the tree network G!

6.5.5 Multiple Centers

By analogy to the k-medians problem, there is also a k-centers problem.
The following definitions are appropriate.

Let G(N, A) be an undirected network and let Xk = {XI' X2, ••• ,xk} be a
set of. k points on G. We shall use, as before, d(Xk,j) = Minx,EX. d(xl,j)
[i.e., d(Xk,j) is the minimum distance between any one ofthe points XI E Xk

and the node j on G].

Definition: A set of k points xt 00 G is a set of unconstrained (or absolute)
k-centers of G, if for every set Xk E G,

(6.28)

where
(6.29)

Definition: If the sets Xk> xt in Definition 1 are constrained toconsist solely
of k nodes of the node set N, then the set X: is a set of vertex k-centers of G.

Until recently, k-center problems were believed to be among the most
difficult graph problems to solve. The work of Handler [HAND 79] has,
however, provided a set of algorithms-which he called "relaxation algo-
rithms"-that solve efficiently problems of considerable size (e.g., n = 200,
k = 5).

6.5.6 Requirements Problems

So far we have addressed urban facility location problems of the type:
"Where should I locate k facilities to maximize (or minimize) some (given)
objective function?" Very often, however, the question will be asked in quite
different terms: "We would like to achieve certain standards of performance
(either as specified by legislative fiat or as deemed necessary by service
administrators). What is then the smallest (or least costly) number of facilities



444 Applications of Network Models Ch. 6

tbat we need, and wbere sbould tbese facilities be located to achieve these
standards ?"

ln this section we sball discuss briefty procedures for dealing with this
second type of question-which we shall refer to as a "requirements prob-
lem."

Clearly, our earlier work (and algorithms) can provide the building blocks
for solving requirements problems. To take a concrete example, the Emergency
Medical Service Systems Act passed by Congress in 1973 (EMSS Act PL93-
154) states in its guidelines tbat 95 percent of rural calls for emergency
medical service should be reacbed witbin 30 minutes from tbe call and 95
percent of urban calls witbin 10 minutes. This is now a case where some
standards of performance have been preset by legislation for an urban (and
rural) service. At tbis point the analyst must take over. To determine appro-
priate locations for basing the emergency medical care facilities or an asso-
ciated ambulance system, the foregoing specifications must be interpreted in
more concrete operational terms. For instance, the following might be a
reasonable interpretation of the standards of performance set by the EMSS
Act: "It is required that 95 percent of all calls must be reached within 30 (10)
minutes. We also know that, in most reasonable service systems, it might be
expected that a certain percentage of calls for service will have to queue up
for a period of time due to ali the servers of the service system being busy.
It might then be inferred that for the EMS system to have any hope of
achieving the specified performance standards, it must be that all of tbe
potential users of tbe service should be within 30 (or 10) minutes of traveI
time from their elosest EMS facility."

We thus now require a set of locations such that no potential users are
more than 30 (or 10) minutes away from at least one of them. This we
recognize as a problem very similar to the k-centers problem. ln this case,
however, the number of required locations, k, is not given. lnstead, we know
the maximum acceptable distance that can be associated with our k-centers.
ln other words, in our notation, we are given the value of m(Xt) (= 30 or
10 minutes, depending on the case), and we are asked to find k and the loca-
tions xt.

A possible approach to finding the least number and the locations of
EMS facilities required to achieve m(Xt) = 30 (or 10) sbould now be
obvious.:"

EMS Coverage "AJgorithm"

ST EP 1: Set k = 1.

STEP 2: Solve the k-centers problem for the current value of k.

18Weare now assuming that link lengths are given in terms of travei time rather than
distance.
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STFP 3: Ir m(Kt) <:: ~o minutes (or 10 minlltl:§); SIrI!' Th~ cmrl:nt y!\lUI.! ('If

k is the minimum number of facilities required and the appro-
priate locations ofthese facilities are the locations ofthe k-centers.
lf m(Xt) > 30 (or 10) minutes, go to Step 4.

J
STEP 4: Set k = k + 1 and retv-n to Step 2.

In the procedure above we did not specify whether at Step 2 we are
solving an absolute k-centers problem or a vertex k-centers problem. This
will depend on whether the potentiallocations of the facilities are unrestricted
or, as is so often the case in practice, the choice of locations is restricted to
only a finite number of points (or general areas) in the region of interest. ln
the latter case the vertex k-centers problem is the appropriate one for Step 2.

We can now describe in quite general terms a more realistic "scenario"
than hitherto, for facility location problems in the urban environment.

1. A certain primary objective is stated, usually in the form of a require-
ment for compliance with the performance standards set by an
administrative, legislative, or other body (e.g., "achieve the perfor-
mance standards set by the EMSS Act").

2. Some restrictions on the potentially acceptable facility locations are
also specified. These restrictions are often due to local considerations
or conditions or to special requirements of the facilities to be con-
structed (e.g., "all ambulance stations must be adjacent to local
hospitaIs").

3. One or more secondary objectives are also often specified. These
secondary objectives are usually expressed in terms of costs, although
other measures of effectiveness also appear sometimes (e.g., "once
the performance standards in the primary objective are met, the
least-cost system configuration should be selected").

Example 18: Ambulance LocationjAllocation in a Rural Area

In a case reported recently [JARV 75a], a team of analysts were asked to
assist the Bel-O-Mar Regional Council of Wheeling, West Virginia, in devel-
oping a regional emergency ambulance allocation plan. Bel-O-Mar is a
regional planning agency responsible for a four-county region encompassing
the Wheeling SMSA.19 This is a predominantly rural area of about 1,360
square miles straddling the Ohio River; its population of 200,000 peoplc is
dispersed among approximately 90 communities in the area.

The primary objective was to design a system that complies with the
EMSS Act standards described earlier. The secondary objective-once the
primary one was satisfied-was to minimize average rcsponse time, a fact

I9Standard Metropolitan Statistical Area.
\
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that finally resuIted in ambulances being allocated to the seven communities
, which were the largest demand-generators in the region. Finally, local con-
siderations included the following: ambulances should not cross the Ohio
River in responding to calls; ambulances must be located in both Wheeling
and Bethlehem-the two largest communities in the area; and ambulances
allocated to certain prespecified communities cannot provi de service outside
these communities ..

Similar examples have been reported for fire departments, for sanitation
departments, and for emergency facilities in general. It should also be
emphasized that the secondary objective(s) often plays an important role in
the determination of facility locations. The reason is that in many problems
one finds numerous combinations of locations that achieve the primary
objective of satisfying the preset performance standards. The ties must then
be resolved with reference to the secondary objective(s). The secondary
objective(s) usually calls for the solution of a k-medians type of problem,
since, as we have stated, it is usually concerned with the minimization of
some average-cost function. 20

6.5.7 Set-Covering Problems

Another subproblem that often arises in connection with solving require-
ments problems is known as the set-covering problem. It can be described as
follows.

Consider a set Yn = {YI' Y2' ... ,Yn} of n points on a network G (for
instance, Yn could be the set of demand-generating nodes on G) and another
set Xm = {XI' x2, ••• ,Xm} of m points on G which are candidates for the loca-
tion of a set of facilities (some of the points in Xm may coincide with points
in Yn)' Let us now assume that an unambiguous threshold of performance
(e.g., a maximum distance .À.) has been specified so that any location XJ E

Xm can be viewed as either satisfying or falling short of achieving that levei
of performance with respect to any point Y/ E Yn' Then we say that a point
XJ E Xm "covers" ("does not cover") a point Y/ E Yn if the point XJ satisfies
(does not satisfy) the threshold of performance with respect to point Y/. For
instance, when the threshold of performance is a maximum distance .À., then
x

J
covers y/ if d(xJ, Y/) < À. and does not cover it if d(xJ, Y/) > À.. The simi-

larity with the concepts of coverage in Section 3.6 is obvious.
The set-covering problem then consists of finding the minimum number,

say k*, of points from the set Xm such that all points in Yn are covered.

20ln rnany cases it is true that primary and secondary objectives are the reverse of
what was stated above.That is, the primary objectiveis to minimizean average-cost
function and the secondary one to achieve a given leveIof performance.
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ExampleIv: Set-Coverlng Problem

Consider seven urban locations A through G and five distinct points V
through Z in the same urban area. Ali 12 points lie on an urban road network.
We shall call the points A through G the "dernand set" of this problem and
points Vtl..Iough Z the "facilities set." We wish to find the smallest number of
points in the facilities set needed tJ cover the demand set of points if it is
specified that each point in the demand set must be within20 minutes of
traveI distance from a point in the facilities set. The 5 x 7 matrix of minimum
distances (in minutes) on the network is given in Table 6-11.

TABLE 6-11 Minimumdistance matrixfor Example19.

A B C D E F G

[d(i,j)] _ ~ r:: :: :: '; i; :: :~]
Y 9 4 9 17 26 22 14

Z 21 29 28 30 10 31 28

The minimum distance matrix [dU, j)] can immediately be translated into
the eoverage matrix, [eU, j)], by setting each matrix element eU, j) to

eU,j) = r if dU, j) ~ 20
O, otherwise

TABLE 6-12 Coveragematrixfor Example19 (À = 20) ..

A B C D E F G

V

[t
1 1 O 1 O

;]W O 1 1 O O

[c(i,j)l = X O O 1 O 1

Y 1 1 1 O O

Z O O O 1 O

The coverage matrix for our problem is shown in Table 6-12. Potential
facility point W, for example, can cover demand points C, D, and G.

The set-covering problem (SCP) can now be stated simply as follows.
Reduce the coverage matrix [eU, j)] to the minimum number of rows required
so that each column in the reduced matrix has at least a singlc clement cqual
to 1. The problem in this form can be readily formulated as an integer
programming 0-1 problem, and indeed the best-known approaches to it
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[GARF 72, TORE 71] begin with such a formulation and develop general
algorithms for the solution of SCP's.

Here we shall not describe these general algorithms. We shall outline
instead a very simple matrix-reduction algorithm which may be used to
reduce the computational size of SCP's. ln many cases, especially those
involving facility location problems on urban or rural roadway networks,
this matrix-reduction algorithm simplifies SCP's so much that a solution can
be obtained by inspection upon completion of the reduction processo

Matrix Reduction for Set Covering (Algorithm 6.14)

STEP 1 (Feasibility Cheek): lf there is at least one column in the coverage
matrix that consists entirely of zeroes, stop. No feasible solution
exists (i.e., the performance standards for coverage must be
relaxed or morepoints must be added to the facilities set).

STEP 2: If any columns have only one nonzero element, say in row t«,
then the point corresponding to row i" must receive a facility.
lnclude that point in the list of those that must receive a facility
and eliminate row i* and ali columns having a 1 in row i* from
the matrix.

STEP 3: If any row(s) j" is such that all its entries are less than or equal
to the corresponding entries of another row j' [i.e., if e(i",j) s:
e(i',j) for allj], then eliminate row t",

STEP 4: If any column(s) j" is such that ali its entries are greater than or
equal to the corresponding entries of another column j' [i.e., if
e(i,j") > e(i,j') for ali n, then eliminate column j".

STEP 5: .Repeat Steps 2-4 until either (a) the coverage matrix becomes
completely empty or (b) no columns or rows are eliminated during
a complete pass through Steps 2-4. ln case (a), a complete solution
(minimum number of facilities and their locations) has been
obtained on termination. In case (b), a solution may be obtainable
by inspection on termination, or application of a more sophisti-
cated SCP algorithm to the reduced matrix may be necessary.

The rationale for each one of Steps 1-5 is rather obvious. The foIlowing
example may also be helpful in understanding Algorithm 6.14.

Example 19 (continued)

Let us apply AIgorithm 6.14 to the set-covering problem already described.
The initial coverage matrix [eU, j)] is given in Table 6-12. By inspection we can
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determine that a feasible solution does exist, since ali columns of [e(i, j)]
contain at least a single nonzeroentry (Step 1).

ln Step 2, we find that column F has only one nonzero element at row X.
It follows that a facility must be located at X to serve, at the least, demand
point F, We eliminate from the coverage matrix row X and columns A, D,
and F [since e(X, A) = e(X, D; >= c(X, F) = 1] and obtain the reduced
matrix shown in Table 6-13a.

TABLE 6-13 Various steps in matrix reduction
for set covering (Example 19).

B C E G

V [
1 1 nW O 1 O

Y 1 1 O 1 '

Z O O 1 oJ
(a)

B C E G

V [~ 1 1 ~JY 1 O
(b)

E G

V [~ ~JY
(c)

At Step 3, rows W and Z are eliminated (Table 6-13b). AlI entries of row
W are less than ar equal to the corresponding entries of row Y, and therefore
ali points covered by a facility at Ware also covered by a facility at Y. The
same is true with respect to rows Z and V, respectively. Next, at Step 4,
columns B and C are eliminated since their entries are ali greater than ar
equal to the corresponding entries of column E (ar, for that matter, G)-
hence any facility location that covers demand point Ewill also cover demand
points B and C. The reduced matrix on completion of Step 4 is shown in
Table 6-13c. Finally, on return to Step 2, facilities must be located at both
points Vand Y, and the algorithm terminates since upon elimination of these
two rows, the coverage matrix is empty.

Thus, the minimum set of locations consists of points V, X, and Y. We
may now, if we wish, return to the original minimum distance matrix [d(i, j)]
(see Table 6-11) and assign each demand point to its nearest facility. This
would assure, in addition to coverage within less than 20 minutes, mini-
mization of average travei distance, as wel1. In this way, we assign demands
from A and E to V, from D and F to X, and from B, C, and G to Y.
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6.5.8 Related Problems

The three classes of facility location problems on networks that we have
reviewed here (medians, centers, and requirements prablems) are not only
important in themselves but also illustrate the basic techniques for appraach-
ing a wide variety of related classes of problems. Two examples of such
prablems follow. .

The first is concerned with locating so-called "obnoxious" facilities that
everyone wishes to be as far away frorn as possible. Garbage incinerators are
one example of this type of facility. Airports (to a much lesser extent) are
another. One instance of such a problem is called the maxian problem and is
concerned with finding a set X: of locations on a network so as to maximize
the function

Thus, this problem differs from the median problem only in the fact that it is
concerned with maximizing rather than minimizing J(Xk) [CHUR 78]. This,
however, requires a very different solution approach than in the case of
medians.

Our second example is cent-dian prablems [HALP 78]. Rather than have
a primary and a secondary objective like the requirements problems, these
problems combine a minisum and a minimax objective into a single weighted
average; that is, they seek to minimize

where .À. is a constant (O < .À. < I) and J(Xk) and m(Xk) are as defined in
(6.15) and (6.29), respectively. Many municipal service facilities (e.g., recrea-
tion centers, basketball and tennis courts, "little city halls") can be viewed as
cent-dians: they should not be toa far frorn any segment of the population
and they should maximize accessibility to the average citizen.

There is also an almost endless list of variations of requirements (and set-
covering) prablems, many of which have been motivated by urban applica-
tions [TORE 71, GARF 72].

6.6 PROBABILlSTIC NETWORKS

In all the network models of urban and other areas that we have seen so far,
we have not considered the possibly probabilistic nature of at least some of
the networks' parameters. Yet, in many instances this probabilistic nature is
sufficiently important to merit separate attention.
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For instance, at no point in the discussion above was explicit recognition
given to the fact that demand for urban services constitutes, in most cases, a
Poisson (or some other probabilistic) processo A consequence of this is that
these services undergo periods of intensive activity, as well as other periods
of reIative ipactivity. During high activity periods, any given facility or,
more specifically, the servers associsted with that facility may be unable to
keep up with the many demands for service. In such instances, either some
demands will have to queue up and wait for a server to become available or
assistance may be sought from other service facilities .elsewhere. In either
event, we have a violation of some of the unstated premises under which alI
the facility location problems described earlier were examined. For, in the
k-center, the k-median, and the set-covering problems, we have implicitly
assumed that:

1. No queueing ever occurs (i.e., whenever a demand arises at a point
assigned to a given facility, that facility will immediately respond to
that demand).

2. Facilities do not interact (i.e., once a demand generation point is
assigned to a given facility that point is served forever and exclu-
sively ·by that facility with no assistance from servers located at
other facilities).

When violation of these assumptions is an infrequent occurrence, as it
usually is in service systems that are utilized at a relatively low rate, the
results obtained in Section 6.5 with regard to optimality of locations can still
be considered valido If, however, as it happens with highly utilized urban
service systems, the foregoing assumptions are violated with high prob-
ability, then these results must be accordingly modified and revised. To do
this, we need the tools provided by queueing theory-and especially the
methodology of the hypercube queueing model-which we covered in Chap-
ters 4 and 5. Much recent work [JARV 75b, BERM 78] has focused on the
problem of selecting facility locations on networks in the presence of signifi-
cant queueing (see also Problems 6.13 and, especially, 6.17 for some impor-
tant concepts in this respect).

Rather than examine the implications of the probabilistic aspects of
demand our emphasis in this section will be on another important network
parameter, "link length." In our earlier material we have always assumed that
the lengths of the links are known constants. In practice, however, this is
often not so, especially when these lengths represent traveI time rather than
distance between adjacent nodes. As we all know frorn experience, there is
usually considerable uncertainty about how long it will take to travei between
any two points x and y in a city. This is especially true under peak traffic
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conditions, when actual travei times can vary widely from day to day over
any given travei path.

It may thus be much more realistic to represent link lengths as random
variables (hopefully, with known probability distributions) under these
circumstances. We shall use the term probabilistic network to refer to alI net-
works for which one ormore link lengths are explicitly defined to be random
variables.ê '

6.6.1 Description and Some Properties
of Probabilistic Networks

It is possible to identify at least three factors that contribute to random
variations in travei times on urban roadway networks: (1) random ftuctua-
tions in traffic density, traffic lights, and so on, and the attendant variations
in traveI speeds that result in what could be termed "routine" randomness;
(2) changes in the average value of the volume of traffic during hourly,
weekly, and seasonal cycles creating "hour-of-the-day" variations in traveI
times; and (3) accidents, changes in weather conditions, and other unpredict-
able events causing "nonroutine" randomness.

Depending on the context, each one (or combinations) ofthe randomness-
inducing factors above could be the focus of attention in an application. For
instance, since decisions on locations of immovable facilities (e.g., a hospital
or a firehouse) are ofthe "strategic" type (i.e., concerned with making a good
location choice in the long-term sense), it is variations of the second kind
above that one would be particularly concerned with in such cases. That is,
we would be mostly interested in the probability distribution of travei times
over the course of an average day. This distribution, in turn, can be used as
the data base needed to optimize in some sense the accessibility of the facil-
ity(ies) over the facility's lifetime.

By contrast, when a city is making contingency plans for, say, a major
snowstorm, it is randomness of the third kind that is of interest. The planner
must estimate accessibility measures on the basis of the likely probability
distributions for travei times after the snowstorm (e.g., impassable side
streets, traffic jams on main thoroughfares, etc.).

No matter what the case is, the representation of (some or ali) link
lengths as random variables usually means an enormous increase in the
computational effort required to answer some ofthe problems that we solved
rather easily earlier for deterministic networks. The main reason is that the
shortest distance between any two points on a graph and the associated path
are much more difficult to compute or even to conceptualize when link
lengths are random variables. Since the computation of shortest distances

210ur earlier, deterministic models can of course be viewed as only special cases of
probabilistic networks.

Sec.6.6 Probabilistic Networks 453

plays such a fundamental role in most network-based problems, this difficulty
extends to the solution of these other problems as well.

To see why computation of shortest distances is such a mathematically
cumbersome procedure on probabilistic networks, consider the case of an
undirected graph G(N, A) and the problem of finding the shortest path be-
tween some given pair of nodes s, t E ,N. Assume further that there are q
alternative paths, n 1 ,n2, ••• , nq, between s and t, not ali of which are neces-
sarily disjoint (see also Figure 6.39). Suppose that these paths include a total
of k links-with some links possibly belonging to more than one path and that
the length of link i is a random variable LI (i = 1,2, ... , k). Then the joint
probability density function for the link lengths is given by fL •.LI..... L.(t I'

t
2

, •••• ,tk). [In the case where the link lengths are statistically independent
random variables, fL •.L,....• L.(ti' t2, ... , tk) = TU-1 fd ti); that is, the joint
pdf is equal to the product of the individual pdf's for each link length].

FIGURE 6.39 A graph with 11 links, and 5 alternative patns leading from s to t (e.g.

(s. 8, b, t), (s, a. e. t, t). ete.)

If we now define

XJ = the length of the path n J = I: LI
allllnksE7rJ

(6.30)

we have

D(s, t) = shortest distance between nodes s and t = Min (XI' X2, ••• ,Xq)

(6.31)

Computing the probability distribution for the shortest distance between
s and t is thus equivalent to computing the probability density function for
the minimum of the q random variables in (6.31). To obtain the probability
distribution for D(s, t), FD(s.rld), the following steps are therefore necessary:
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STEP 1: From the joint density function fL •.L•..... Lt(tl' tl, ... , tk) and
from the set of q equations of type (6.30) for the path lengths X}'
obtain the joint probability density function for the path lengths

STEP 2: Use the relationship

to compute the quantity of interest, since D(s, t) is defined as in
(6.31).

Obviously, for even a smalI number of paths, 1t}, and a smalI number of
member links, m, the two steps above (especiaIly the first) will involve very
tedious and time-consuming mathematical manipulations and operations.
This is truly unfortunate, as this is one of the most commonly faced prob-
lems in the dispatching of urban emergency vehicles, where choosing the
shortest-in some probabilistic sense-path is often of paramount impor-
tance. Only a few general results with reference to the above two-step pro-
cedure have been derived [FRAN 69], but they are of very limited practical
use.

A more mathematicalIy tractable problem is the one concerned with
pairwise comparisons of distinct paths. This case arises whenever, in dis-
patching a vehicle, it is necessary to choose between exact1y two given alter-
native routes on the roadway network. In such cases we can compare the two
routes not only with respect to their expected values (which is a trivial matter)
but also in a probabilistic sense [FRAN 69]. For example, we may be con-
cerned with guaranteeing that extremely long traveI times wiIl be avoided as
often as possible.

Given two aIternative paths (routes) 1t1 and 1tl, we shall say that path 1t1

is "do better than" 1tl if

(6.32)

where XI and Xl are the lengths of 1t1 and 1tl, respectively, and do is a con-
stant.

When link lengths are statistically independent random variables, the
pdf''s for XI and X2 can be computed through a sequence of convolutions
involving the pdf's of the link lengths for all the links in each one of the two
paths (see also Chapter 2). If, however, the paths 1t1 and 1t2 contain many
links, then it is natural to use a normal approximation for the distributions
of XI and X2, taking advantage of the fact that, under very general condi-
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tions, the sums of random variables are approximately normaIly distributed
(Central Limit Theorems). Note that it is possible for 1t1 to be d, better than
1t2 and for 1t2 to be d2 better than 1t1 for two constants d, and dl (dI =1=d2).

6.6.2 Discrete and Finite State Space
for Probabilistic Networks

As a consequence of the conceptual and computational difficulties in
. obtaining shortest distances on probabilistic networks we are usuaIly forced

to make some simplifications when working with such networks. One obvious
(and by far the most common) possible simplification is to use the expected
link length for every link as a proxy for the true link length. This of course
transforms what is actually a probabilistic network into a deterministic net-
work with constant link lengths.

Another possible simplification which, while increasing mathematical
tractability, preserves at the same time the added realism provided by the
probabilistic properties of the models is the assumption that link lengths are
discrete random variables that take only a tinite number of values. That is,
we approximate the probability distribution of random variable L(i,}), the
length of the link Ci,j), by writing

P[L(i,j) = t,] = P, for s = 1, 2, ... , c (6.33)

where L:~-IP, = 1. Thus, the link length can only take values tI> t2, ••• , te.
If one of these values, say tk, is infinite, we say that link (i,}) "fails with
probability Pk" since, in this case, it wilI be impossible with probability P» to
traverse (i,}) in finite time.

The net effect of this assumption is that the network now has only a
finite number, m, of states. Each state differs from the others by a change in
the length of at least one link. Thus, the finest-grained sample space for the
network consists of a listing of the set of alI m mutualIy exclusive and collec-
tively exhaustive possible network states that can be denoted as G I' G 2" ••• , Gm

(to make explicit the fact that each state is a different "snapshot" of the net-
work) with each network state having a probability of occurrence P" r =
1,2, ... , m.

In general, the number of states wilI depend on the degree of statistical
dependence among the random variables L(i,j). ln the extreme case where
complete statistical independence prevails, we have

m = TI c1}
al1l1nk.(I,})

where Cu is the number ofvalues that the length oflink (i,j) [i.e., L(i,})] can
take. SimilarIy, the state probabilities, P" must either be known [in the case
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when the L(i,j) are not mutual!y independent] or are easily computable
(when we have statistical independence).

Let us now define;

l,(i,j) = length of link (i,j) when the network is in state G,

d,(x, y) = shortest distance between points x and y when the network
is in state G,

For each given state, r, the network's snapshot G, looks exactly like a
deterministic network and, therefore, using our earlier shortest-path algo-
rithms and the known link lengths l,(i,j), we can compute the minimum
distance d,(x, y) between any two points x, y E G.

ln principle, then, it is possible to compute, under the assumption that
there is no change of states during travel, such quantities as:

1. The length of the expected shortest path between two points x, y E

G:
E[D(x, y)] = f: P,d,(x, y)

,~1
(6.34)

2. The probability that the distance between two points x, y E G is less
than or equal to a constant À:

P[D(x, y) < À] = 2: P,
,ES

(6.35)

where S is the set of states for which d,(x, y) < À.

The computational effort involved may, natural!y, still be formidable
and depends critically on the total number m of distinct states. For instance,
supposing that each link length L(i,j) takes c distinct values and assuming
ful! statistical independence between links, we have

m = c' (6.36)

where e is the total number of links in the network. Since for a connected
graph we have n - I < e < n(n - 1)/2, where n is the number of nodes in
G, the number of states in the case above can be very large even for modest-
size networks.

On the other hand, it is very 1 nlikely that in an urban context the link
lengths will be statistically independent: traffic conditions, for example, have
approximately identical time patterns throughout a city, and therefore at
peak traffic times the higher values of link lengths prevail simultaneously, for
alllinks on the network model, while the opposite is true at off-peak periods.
Thus, in many cases it is possible that a few distinct states (small m) will

Sec.6.6 Probabilistic Networks 457

suffice to model, at least approximately, the most common sets oftravel con-
ditions under which urban roadway networks operate. The approach that
was outlined above will then prove computationally feasible under these
circumstances.

Example )20: PMF for the Shortest Path Length
)

Consider again a graph like the one of Figure 6.40, in which ali but three of
the links are deterministic. The lengths of the probabilistic links L(b, t),
L(s, d), and L(e, r) are assumed to take two, three, and two distinct values,
respectively, with probabilities as indicated. Thus, for instance, P[L(b, t) = 6}
= 1- We assume statistical independence between links and wish to find the
distribution of the shortest distance D(s, t) between nodes s and t.

There are a total of 12 states in this case. They have been indexed with the
numbers 1 through 12 (in arbitrary order) and their important parameters
are tabulated in Table 6-14. Figure 6.41 shows the network in the state which

FIG U RE 6.40 The network of Figure 6.39 with links tb, t). (s, d) and (e. g) having probabilistic
lengths. Lengths and corresponding probabilities (when applicable) are shown on each link.

4

1

\

d.is, t) = 6

Shortest path = s-d-e-g-t

FIGURE 6.41 One particular state of the network of Figure 6.4.
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has been indexed as state 1 in Table 6-14. From Table 6-14 it can be seen that
D(s, t) takes the values 6, 7, and 8 with probability 1/4, 7/12, and 1/6, respec-
tively.

TABLE 6-14 Paramoters for Examplo 20.

State r (b, t) (s, d) (e, g) Pr Shortest Patht d.çs, t)

1 1 1 1 Tr {s, d, e, g, t} 6
2 1 1 3 n {s, d, e.T. t} 7
3 1 2 1 TI {s, d, e, s. t} 7
4 1 2 3 n {s,a,b,t} 8
5 1 3 1 TI {s, c, d, e, g, t} 7
6 1 3 3 n {s, a, b, t}* 8
7 6 1 1 ! {s, d, e, g, t} 6
8 6 1 3 Ta {s, d, e.I, t} 7
9 6 2 1 ! {s, d, e, s, t}· 7

10 6 2 3 Ta {s, d, e, I. t}* 8
11 6 3 1 ! {s, c, d, e, g, t} 7
12 6 3 3 ...L {s, c, d, «J, t} 818

1An • indicates that there is at least one additional equal-length shortest path
at that network state,

6.6.3 Facility Locations
on Probabilistic Networks

As a further illustration of the application of probabilistic network ideas
to urban service system problems, we now reexamine briefly the question of
facility location assuming a probabilistic network model. Throughout our
discussion we shalI be using the discrete and finite state-space model which
we described in Section 6.6:2: each probabilistic network can be in one of m
states with the probability of it being in state r given by F:

Two important observations must be made in the beginning:

1. When there are two or more facilities on a probabilistic network and
assuming that any demand point wilI always be served by its nearest
facility at the moment when that demand is generated, the facility
serving a particular demand point wilI depend on the state of the
network. This point becomes quite obvious once it is realized that
shortest distances and paths change with the state of the network.

2. A finest-grained sample space should be used in solving facility loca-
tion problems on probabilistic networks. This can best be explained
initiaIly through the foIlowing example.
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Example 21: Uslng lhe Finest-Grained Sample Space

Consider the network of Figure 6.42. The lengths ((1, 3),(2, 3), (2,4), and
t(3, 4) are deterministic with values of 5,2, 5, and 5 units, respectively, while
L(I, 2) takes on the values of 1 or 13 units, with probability 0.5 for each value.
Thus, E[J..(1, 2)] = 7.

Assume now that we wish to 'solve a single-median problem and that
somehow it is known that the optimal location for the median is at one of the
nodes of the network.s- The demand weights are shown in parentheses next
to each node.

(I)

(O)
FIGURE 6.42 Probebilistic network for Exemplo 21.

Suppose that E[L(I, 2)] were substituted for the length L(I, 2). Then the
optimal location of the facility is at node 3 with an expected travei time of
3j units (= t·5 + t·2 + t·4). If, however, we use a finest-grained sample
space and assuming that the current state of the network is always known
whenever a trip is undertaken, it can be seen that the minimum distance be-
tween nodes 1 and 2 is either 1 or 7 units [via no de 3 whenL(1, 2) = 13], each
with probability 0.5. The expected travei distance when the facility is located
at node 2 is then equal to 3 units l= t(4) + t(O) + t(5)] and node 2 is a better
location than node 3.

From the example it is cIear that the finest-grained sample space is needed
because the shortest path between any two points may vary with the state

22We have shown this to be true for deterministic networks, but we have yet to prove
it for probabilistic networks.
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of the network. In fact, our example also demonstrated that the substitution
of expected value E[L(i,j)] for the actual values trCi,j) of the link lengths may
lead to erroneous results. Unfortunately, as we noted earlier, this substitution
is often used in practice, since most deterministic network models arecon-
structed, in the first place, by using "average" travei times as deterministic
substitutes for the random variables L(i,j) that link lengths really are. Such a
substitution may be justified only when the current state of the network is
not known whenever a trip is started.

We now proceed to develop a single-median result for probabilistic net-
works. For an undirected network G(N, A) with n nodes, we have:

Definition: A point x* on an undirected probabilistic network G is an expected
I-median of G, if for every point x E G,

J(x*) ~ J(x) (6.37)

where
(6.38)

Our result, completely analogous to Hakimi's for deterministic networks,
states:

Theorem: At least one solution to the expected 1-median problem exists on
a node in an undirected probabilistic network.

This theorem can be proved (see [MIRC 79b]) under the folIowing
assumption:

Homogeneity assumption: The time required to traveI a fraction e of the
link (i,j) is equal to e·l,(i,j) for all r = 1,2, ... , m.

The homogeneity assumption states in effect that the speed of travei on
any given link is uniform-an assumption that is both straightforward and
reasonable since the network model of the urban area can easily be con-
structed such that this assumption holds.

The theorem above can be extended, as one might suspect, to the case of
the expected k-medians. In fact, the folIowing even more general result has
been shown to hold [MIRC 79b]:

Definttion: A set of k points xt on an undirected probabilistic network G is a
set of expected optimal k-medians of G if for every set Xk E G,

(6.39)
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where

(6.40)

and u(t) is the utility function of traveI time t.
)

Then

Theorem: At least one set of expected optimal k-medians exists on the nodes
in an undirected stochastic network if the utility function for travei time is
convexo

Similar very general results for medians also apply to directed networks.
Finally, we note that an implicit assumption in the foregoing discussion

of the medians problem on probabilistic networks has been that the appro-
priate connectivity conditions apply. For instance, our definition of the
expected single median would be meaningless if it were not true that "those
nodes with nonzero demand (h, > O) are always, that is, for ali m possible
states of the network, connected." Were this not the case, then some dis-
tance(s) between one or more nodes and the facility would be infinite and so
would the expression for i(x).

The study of probabilistic networks- ' and their applications to urban
service systems has begun in earnest only recently. This is not due to lack of
promise of highly useful results but rather to the conceptual and computa-
tional difficulties to which we al\uded earlier. It can be safely anticipated that
this will be one of the most active areas of investigation by operations
researchers, management scientists, and others in the next few years.
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Problems

6.1 Shortest paths with some l(i,j) < O When some link lengths on a network are
negative the two shortest-path algorithms of Section 6.2 must be modified. AI-
gorithm 6.1 must be modified drastically, while only a minor modification is neces-
sary in Algorithm 6.2. ln this problem we shall explore various aspects of the
shortest-path problem with some lU,j) < O.

a. Let l(/, e) = -2, instead of 5, in the graph of Figure 6.3. How would the
shortest-path tree of Figure 6.5 change?
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b. Suppose that the following approach has been suggested for finLlllig shortest
paths on the graph of Figure 6.3 with t(j, e) = -2: (i) Add 2 u.ilr.. .o the
length of alllinks of the graph so that ali tu, j) :;::::O; (ii) use Algorithru 6.1
to find any shortest paths required and then subtract 2 units from every
link on each shortest path to find the true length of each shortest path.
What is wrong with such an approach?

c. Suppose now that ur. e) = -8 in Figure 6.3. What would now be the
minimum distance between nades a and i,d(a,j)?

Hint: Be careful!

d. The phenomenon that you have observed in part (c) is referred to as a
"negative cycle." Whenever a negative cycle exists between two nades of a
graph, the shortest-path problem for this pair of nades is meaningless.
Note that this means that no undirected links on a graph should have nega-
tive t(i,j)-since this immediately implies a negative cycle. Shortest-path
algorithms must be able to "detect" the presence of negative cycles if they
ure to work with some t(i,j) < O. The key to such detecting is the following
statement: in a graph with n nades, no meaningful shortest path (i.e., one
that does not include a negative cycle) can consist of more than n - 1 links.
Argue for the validity of this statement,

e. Algorithm 6.2 can be used as stated for cases where some tu, j) < O with
only a minor modification to check for the existence of negative cycles
upon termination. How would you use the final matrix D<n) at the conclu-
sion of Algorithm 6.2 to check whether there are any negative cycles in a
graph?

Hint: What should happen to one ar more diagonal elements d,,(i, i)
of this matrix ir there is a negative cycle in the graph ?

f. Repeat Example 2 of Section 6.2.2 for the case in which the length of the
directed are from nade 5 to nade 2 in Figure 6.6 is equal to -3.

g. Can you suggest how shortest-path AIgorithm 6.1 should be changed in
arder to be applicable to cases with some tu, j) < O?

Hints: No labels can becorne permanent (i.e., nades cannot become
c1osed) until ali labels are permanent; the algorithm requires at most
n - 1 passes but may terminate earlier if no labels change during a
passo

For a more extensive discussion of algorithms of this type, see, for instance,
Chapter 8, Section 2.2, of Christofides [CHRI 75].

6.2 Intersection of two-way streets Consider the interse.,.r,» UI1WO major avenues
near the center of a city. The intersection is controlled by fl ,d of traffic lights. Both
avenues carry two-way traffic.

Cars wishing to make a right turn at the intersection incur a "penalty' of two
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time units; those mak ing a left turn, a penaIty of four time units; and those con-
tinuing on a straight course, a penalty of one time unit. No U-turns are permittcd.

Drawa network model of this intersection. The model should bc a finest-grained
one, so that ali possible actions of motorists at this intersection can be accounted
for.

6.3 Network model of commuter's choices In the case shown in Figure P6.3, a
comrnuter wishes to traveI from his residence near station A to his place of employ-
ment at D. The cornmuter's transportation choices are:

1. Ride a bus from A to D; ride time is 25 minutes.

2. Riele on subway line 1 to station B, change to subway line 2 and move to
D. Ride times for each leg are shown in Figure P6.3.

3. Ride on subway line 1 to station C, change to subway line 3 and move to
D. Riele times for each leg are shown in Figure P6.3.

A

/
Subway line 2 ;\4m,o<

Subway
line 1

12 mins

-.
Subway line 3

c

Headways between subways on ali lines are exactly 10 minutes, Moreover, the
subway schedules are coorelinateel so that a line 2 train to D passes through B
exactly 4 minutes after a line 1 train has stopped at /J, and similarly, a line 3 train to
D passes through C exactly 4 minutes after a line 1 train has stopped at C. Assume
that transfer times and stop time are negligible.

Headways bctwecn buses at A are also constant anel equal to 10 minutes.

a. Assuming that the commuter is aware of the bus schedule and of the sub-
way schedule and that he times his arrival at A so that it coincides with the
passage of whatever vehicle he chooses to ride, prepare a network model
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for the situation shown in Figure P6.3. The network model should be such
that a shortest-path algorithm, such as AIgorithm 6.1, can be used to find
the shortest path from A to D.

b. Assume now that alI headways in this problem (for buses and subways)
have negative exponential pdf's alI with means of 10 minutes. The commuter
now arrives at a random time relative to the passage of buses or subways
from A. In addition, alI subway !ines are operating independently of each
other or of the bus. Prepare a network model for this new situation such
that one can determine, through a shortest-path algorithm, the transporta-
tion mode and route that offers the shortest expected traveI time between A
and D.

c. What is the preferred route (and mode) in each of parts (a) and (b)? What
is the shortest expected traveI time in each case?

6.4 Design of an optimum road network Suppose that in Figure 6.11, the nodes of
the graph represent seven towns in a rural area and its links a set of paved roads
which could possibly be constructed to connect the towns. Note that some con-
nections (e.g., C to D) cannot be built (owing, perhaps, to such constraints as moun-
tainous terrain). The distances indicated on Figure 6.11 are miles.

Suppose now that a regional commission charged with planning the road net-
-- work in this area: (I) has a budget sufficient to construct up to a total of 34 miles of

paved roads; and (2) wishes to minimize the quantity Z = ~I ~J d(i, j), i, j = A, B,
C, D, E, F, G, where d(i, j) is the shortest distance between town iandj measured on
the roadway network that will actualIy be constructed. [If there is no paved path
between two towns i andj, d(i,j) is considered infinite. Note that the MST provides
the minimum budget for which Z is finite.]

Find the optimum road network for this case. (This is an example of "optimum
network design," a cJass of difficuIt network problems.)

6.5 Solving the CPP on a city map It has been pointed out that good solutions to
urban Chinese postman problems can usualIy be found quite easily, even for large
networks, if a good map is available.

The map of Figure P6.5 involves about 50 nodes and 90 ares. It is based on a
test problem due to P. Authier (University of Sherbrooke, Canada). There are 38
odd-degree nodes in thenetwork (i.e., more than 1021 alternative matchings)! Solve
the CPP for this network using AIgorithm 6.5 and finding a matching of odd-degree
nodes by inspection (plus trial and error). Make a photocopy of the map and indi-
cate (by doubling lines in red pencil or in ink) the street segments that must be
traversed twice in your solution. (A tour is required; distances are in tens of feet.)

What is the total distance that will be traversed twice in your solution? (In the
optimal solution the answer is 8,360 feet, incJuding the length of dead-end streets-
which must be traversed twice anyway.)

6.6 Chinese postman problem on a directed network To solve the CPP on a directed
network [BELT 74], we begin by quoting the version of Euler's theorem that applies
to directed networks: 20
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A connected directed network possesses an Euler tour if and only if the indegree
and the outdegree of every one of its nodes are equal.

The proof of this theorem is completely analogous to the proof of Euler's
theorem for undirected networks (you may wish to retrace its steps).

T.o solve the CPP on any directed graph, we first define

p/ = "polarity" of i = (indegree of i) - (outdegree of i)

A node i for which p/ > O (P/ < O) is called a "supply" ("demand") node. We
indicate the sets of supply and demand nodes as S and D, respectively.

a. Show that ~/EN p/ = O.

The following algorithm solves the CPP on directed graphs (the algorithm is stated
informally) :

STEP 1: Identify all supply and demand nodes and compute the polarities of each
and theminimum distance d(i, j) from alI nodes i E S to ali nodesj E D.

STEP 2: Solve a transportation problem (TP) to find the optimum "matchings"
of supply with demand nodes. This TP is:

minimize

~ ~ d(i,j)xl}
/ES ]ED

subject to

for ali i E S

~ Xli = -p/ for allj E D
/ES

where Xli ~ O. (Remember that p] < O for j E D; i.e., -p] is positive.)

STEP 3: For each xli > O in the solution to the TP, add to O, xli replications of
the shortest path from i E S to j E D. The resulting network O' has
p/ = O for alI nodes.

STEP 4: Find an Euler tour on O'. This tour is a solution to the CPP on O.

b. Write a paragraph explaining what the algorithm above does and why, Can
any links be traversed more than twice in the CPP solution?

c. Apply the algorithm above to solve the CPP on the directed network of
Figure P6.6. Describe a minimum-length tour that begins and concludes
at no de b.

Hint: The optimal solution requires coverage of 28 units of distance
over and above the length of the network.
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d. Suppose now that O is a mixed graph (i.e., it has both directed and un-
directed links). It might be thought that in order to solve the CPP on such a
network one could (I) substitute all undirected links (i, j) with two directcd
links (i, j) and (j, i) of equal length (and of opposite directivities); and (2)
apply the algorithm (for the CPP on directecl graphs) clescribecl above to
the resulting clirectecl network. What is wrong with this approach ? As
we noted earlier in the chapter, no efficient algorithm is available for the
CPP on mixed graphs and the problem has in fact been shown to be NP-
complete.

6.7 Upper bound on the expected length of the TST A total of 1/ points are randomly
and uniformly clistributed within a unit square. We wish to obtain an upper bouncl
on the expected length of the optimum traveling salesman tour, E[TST] , through
these n points.

Suppose that we divide the unit square into m equal-wiclth columns, as shown
on Figure P6.7, where m is to be determined later. We visit ali 11 points through the
following strategy, We start from the point in the leftmost column having the
largest y coorclinate. We then visit the point in the sarne column having the next
lower y coordinate, and so on. When we reach the lowest point in the first column,
we next visit the lowest point in the second column and wc thcn traverse the points
in that column upward. We continue this process by visiting ali columns from ler!
to right, changing the direction of traversal at each column. To complete the tour,
we join the last point to the first point with a straight line.

Let S" be a random variable denoting the length of this touro Clearly, E[S,,] ~
E[TST).

a. Let d(P], Pl+1) be the clistance between two consecutively visited points,
p] = (x], y]) anel P]+l = (x]+1> Yl+l) in S". It is obvious that

Then show that

1 1E[S,,] S;; (1/1 - 1) • - -I- (11 - /11) -3 -I- Ir/ -I- J2
III III
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2 m-I m
First point

Last point

1-

b. Now choose the most advantageous value of m and find an approximate
upper bound for E[TST] for large n. (Assume that n » 3.)

c. Suppose now that instead of a unit square, the foregoing procedure were
applied to a rectangular area of dimensions Xo by Yo. Show from (a) and
(b) that if m is chosen correctly (what is lhe J,10per value of m?) the upper
bound on E[TST] (i.e. E[SnD must be less than or equal to a quantity pro-
portional to approximately 1.15.y'nA, where A = Xo' Yo, for large n
(n» 3).

6.8 Coin collection from parking meters Figure P6.8 shows a section of a down-
town area. A special coin-collection truck must traverse all street segments indicated
with solid lines once a week, to colIect coins deposited in parking meters by motor-
ists. Parking meters exist on only one side of these streets.

Street segments indicated by dashed lines do not have parking meters and there-
fore need not be traversed, except as necessary to traveI between parts of the down-
town street grid.

TraveI in ali street segments is permitted in only one direction, as indicated by
the arrows in Figure P6.8. An east-west block is 9 units long, and a north-south
block is 6. Diagonal street segments are 11 units long. Note that there is no direct
connection between points 3 and 7.

What is the length of the shortest route that the truck can travel beginning and
ending at point 1 and traversing, at least once, all street segments with parking
meters? Describe one such shortest route.
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How is this problem different from the CPP on directed networks? Can you
devi se a systematic procedure for dealing with this family of problems?

6.9 Proof of Hakimi's theorem Prove that "at least one set of k-medians exist
solely on the nodes of a network G" (Section 6.5.2). The proof for k = 1 was given
in Section 6.5.2.

6.10 Location of a "supporting facility" Consider the network of Figure P6.10 and
imagine that the nodes represent tive cities, the numbers next to the nodes the
"weights" of the cities, and the numbers next to the links the mile length of roadways
connecting the cities. Cars traveI on the roadways at an effective speed of 30 mph.
Assume that a major facility, say an airport, has been located at some point on this
network. A regional planning group now wishes to install a high-speed transporta-
tion Iink to the airport with a single station. The high-speed vehicles will traveI on
the network at twice lhe speed of cars and their route will be the shortest route
to the airport. It is assumed that travelers to the airport will choose that combina-
tion of transportation modes which minimizes their access time to the airport
(ignoring transfer times).

To clarify lhe description above, assume that the airport is at node 2 and that
the single station of the high-speed link is located at node 5. Then, the access time
to the airport of travelers from node 5 is 25 minutes. However, the access time of
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3 20r--------( 2

5 10

2 3 3

travelers from no de 1 is still40 minutes. (It would take travelers from node 1 exactly
20 minutes to get to node 5 by car and then another 25 minutes to get from 5 to 2,
so that it is better to go directly to the airport by car.)

a. Show that no matter where the major facility (airport) is located, an optimal
location for the station of the high-speed vehicles must be on a node of the
graph. "Optimal" here means minimizing the total weighted traveI distance
to the airport for travelers from the five cities. Note that the airport is not
restricted to be at one of the nodes of the network. Vou may wish to show
this for a general network rather than for this specific case only.

b. Assuming that the airport is located at node 2, where should the station be ?
Note that it is simple to devise an algorithm for solving this type of prob-
lem.

c. Assume now that traveI time, in minutes, by car between any two points x
and y on the network is given by f[d(x, y)] = [d(x, y)J5]Z, where d(x, y) is
the shortest distance between the two points, and that traveI time through
the high-speed link between the same two points is given by g[d(x, y)] =
1[d(x, y)J5]z. How would you answer part (b) now?

Hint: The optimal solution is no longer on a node.

It can be shown that the result you proved in part (a) holds as long as the func-
tionsf[d(x, y)] and g[d(x, y)] are both concave in d(x, y) [MIRC 79a].

6.11 Validity of Algorithm 6.13 In this problem you are asked to prove the validity
of Algorithm 6.13 for the single center of a tree. Using the notation of Se":dv.: u.5.4

I

and the symbol x* to denote the (yet unknown) absolute center of the undirected
tree network G:

a. Show that for ali points x E G we must have

m(x) = m(x*) + d(x, x")

b. Argue from part (a) that

m(e,) = 2m(x*)

and, therefore, that x* must Iie on the path associated with m(e,) and must
be at the halfway point between e, and e,.

6.12 Speeding up the search for the absolute center In our discussion of the abso-
lute-center problem, it was pointed out that the quantity

L ( ) _ m(p) + m(q) - l(p,q)
I p,q - 2

provides a lower bound for the value of m(xt) on a link (p, q) [cf. (6.26)]. This bound
provides a very convenient test that facilitates the search for the absolute center of
a graph.

Another bound for m(xt) has been developed recently, as follows. For the link
(p, q), let r be the farthest node fromp (r E N) and s the farthest node fromq(s E N)
[i.e., m(p) = d(p, r) and m(q) = d(q, s)]. The quantities that will be used to develop
the new bound are d(p, s) and d(q, r). Clearly, the quantity Max [d(x, r), d(x, s)]
provides a lower bound on m(xt).

a. Prove the foJIowing result: The quantity Max] d(x, r), d(x, s)} may attain at
most a single local minimum within (q, p), i.e., exc\uding lhe nodes p and q.
Jf such a local minimum exists it is attained at a point Xo E (p, q) which is
a distance

l(p, q) + der, q) - d(s, p)
2

awayfrom nodep along(p, q) and at which the value of Max(d(x, r), d(x, s)}
attains the value

L( )_d(p,s)+d(q,r)+l(p,q)
Z p, q - 2

Lz(p, q) is then a lower bound for m(xt) for alI points x E (p, q), exc\uding
the nodes [J and q.

b. Show that Lz(p, q) :::::LI (p, q), that is, that Lz(p, q) provides a better lower
bound and thus a sharper test than LI (p, 'I) for speeding up the search for
the absolute center of a graph.
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6.13 Facility location with congestion The network of Figure P6.13 represents five
towns and the roadways connecting them. Emergency medicar centers (one or more)
are to be located in this area. The numbers in parentheses indicate the average num-
ber of calls for assistance generated per hour at each of the five towns. For each town
the call-generating process can be considered Poisson and the process for each town
is independent of that for alI others. The numbers on the links of the network indi-
cate the travei time, in minutes, for ambulances traveling that link (we assume that
travei times within the towns are equaI to O).

Assume that it has been decided to locate exactIy two medical facilities in this
region. Each medicar facility will be assigned a set of towns that it will serve excIu-
sively (the two sets are mutually excIusive and collectively exhaustive). Once the
two sets of towns have been determined, the two facilities will operate as separate
and independent entities. Each facility operates in the folIowing way.

Ambulances are stationed at each medicaI facility and traveI to incidents (and
back) along shortest paths.

(I)

(6)

Once a call for service is received, and provided that an ambulance is available,
an ambulance is immediately dispatched to the caller. The ambulance spends
exactly 4 minutes at the scene of the call for ali calls and then travels back to the
medicaI facility (traveI takes exactIy the same time both ways). As soon as an ambu-
lance returns to its origin, it immediately becomes available to rcspond to the next
call.

Calls for service that are received when no ambulances are available are placed
in a first-come, first-served queue and eventually receive service. No calls for service
are ever Iost.

a. Show that if it is desired to minimize the average service time on this network
(where a service time consists of the round trip traveI time plus the time
spent on the scene) the two separa te medical facilities should be placed at
two nodes of the network.

b. The optimallocations of the two facilities have now been determined with
the objective of part (a) in mind. Determine the minimum number of
ambulances to be placed at each one of the two facilities if the whole system
(i.e., the ambulance dispatching process from the two centers) is ever to
reach steady state. (The minimum number need not be the same for both
facilities.) Please explain your work and reasoning cIearly.
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c. How would your answer to part (b) change if the duration of time spent on
the scene of each calI for service were, instead, a random variable S, with
pdf

/s(s) = 15e-15' for s ~ O

where S is given in hours? Please explain your answer.

6.14 Review of'several problems Figure P6.14 shows a transportation network with
10 demand points (towns, centers, etc.)

a. What is the location of an emergency facility that minimizes expected traveI
time?

b. A regional planning committee wishes to designate "emergency artery"
roads so that ali the demand points are connected in time of snow. If the
criterion is to select the minimum total length (in terms of traveI time) of
emergency artery roads, what are the corresponding roads?

c. What is the median and the absolute center with respect to the emergency
artery roads only?

2 2

\ Link
length (time)

)-------{ J (3)

\
Node weight

3

d. Note that nodes E, G, C, and F are demand points with large demand
rate. By inspection, determine the minimum network (subgraph) that con-
nects these points.

e. How will the solution in part (d) change if J is also incIuded in the required
subgraph?

f. Comment on the answers of parts (d) and (e). Is there any speciaI network
structure for these subgraphs?

g. Find a "good" traveling salesman tour on this graph. (Your tour need not
be optimal and you may use any approach you wish.)

h. What is the length of the optimum Chinese postman tour of this network?
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6.15 Multiple delivery routes The circulation manager of a small newspaper in a
town is asked to reorganize the delivery of the newspaper. The traveI network is
shown in Figure P6.15.

The newspaper is produced at node 2 and must be delivered to ali the other
nodes. The manager should decide how many people must be hired to distribute the
newspaper. ln order to maximize service, the longest of ali routes should be as short
as possible, but in order to minimize costs the totallength of the routes of ali people
delivering the newspapers should be as short as possible too. These two goals are,
in general, contradictory! (Explain why.) The circulation manager meets the goals
in the following way:

For ali reasonable numbers of hired people he computes the routes such that
the totallength of the routes is minimized and each hired person has a route of non-
zero length. He now compares the length of the longest route for the different solu-
tions with different numbers of hired people. He then chooses the number of people
N to hire, such that the longest route with N people is less than with N - 1 people,
but is equal to the longest route with N + 1 people. What number is N?

6.16 Design of an optimum road network considering congestion It is well-known
that traveI time by car depends on the number of other cars on the same road,
Keeping this in mind, let us consider the following simple problem.

We are given the network of Figure P6.l6 where the traveI time from node i
to i. namely eu, depends on the flow (number of cars per unit time) x on that are.
Let:

Cl3 = 10x

Cl4 = 50 + x

c]2 = 50 + X

C42 = lOx

C34 = 10 + x

We now send a flow of 6 cars per unit time from node 1 to node 2.

a. As each driver tries to minimize his traveI time independently from the
other drivers, ali possible routes (namely 1-3-2, 1-3-4-2 and 1-4-2) will
have a flow density such that the route lengths (traveI times) are equal.
(Why?) Knowing this, how much flow will be on each are and what is the
traveI time for ali drivers?
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b. Assume now that someone, perhaps a police officer, is regulating the traffic.
This means the police decide how much flow is allowed on each are. Is it
possible to regulate the traffic such that the traveI time for every driver is
lower than it was before, when each driver decided on his own? (The
answer is yes!) How should the traffic be apportioned?

c. If the are from no de 3 to 4 did not exist and you were to decide if it should
be built, what would you recommend?

6.17 Facility location witn queueing Consider two small towns which are one unit
distance apart, as shown in Figure P6.17. (Each town is represented as a single
point (node) on this simple "network," i.e., intra-town distances can be considered
insignificant).

A hospital equipped with a single ambulance is located at some point between
the two towns which is a distance x away from the halfway point between the two
towns.

Calls from the two towns that require dispatching of the ambulance occur in a
Poisson manner at a combined rate À = 1/4 calls/unit time. A fraction fA of these
calls come frorn Town A and a fraction jj, frorn Town B (fA + fB = 1).

ln responding to each call the ambulance travels to the appropriate city at a
constant speed v, spends a constant amount of time 't" on the scene (picking up a
patient) and returns to the hospital (with the patient) at the same constant speed v.
Let v = 1 distance unir/time unit and r = 1 time unit.

Calls for ambulance dispatching queue up in a first-come, first-served manner
until the ambulance eventually serves them. We define the "total response time" of
the ambulance to a patient as the time interval between the instant when that patient
calls for the ambulance and the instant when the patient arrives at the hospital.

a. Assuming steady-state conditions, find the expected total response time to
a random patient. Your answer should be in terms of x, f. and fb only.

Hint: To keep the algebra simple, write your answer in terms of x and
of (f. - fb)'

-1 +1
o~------------~l------~l------o

Town A O x Town Bt
Location of hospital

and ambulance
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b. If the objective is to minimize the expected total response time per patient,
what is the optimal value of x when I. = fb = 1-?

c. Does your answer in (b) agree with or violate Hakimi's theorem for the
Iocation of a median on networks ? Please explain briefly.

d. In the general case (arbitrary À, r,v.I; and Ji,), does the question of whether
steady-state is reached depend on the location of the hospitalfambulance?
Please explain briefly (no mathematics).

e. Suppose now that ali calls that find the ambulance busy, i.e. away from the
hospital, are lost (e.g., the patients are transported to the hospital by taxi).
Where should the hospital be located in this case if I. = 0.8 and fb = 0.2
(and, as before, À. = t, .•= I, v = 1) and the objective is still to minimize
expected total response time for those patients who are served by ambulance'l
(Note that no queueing ever occurs in this case.)

f. Repeat part (e) assuming that an additional constraint is that no total
response time should ever exceed 2.6 units (including the time on the
scene).


